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Scientific Questions
What are the fundamental electroweak parameters?

GF , α(Z),mZ

Precision µ+ lifetime

µ+ → e+ + ν̃e + νµ

Current World average

τµ+ = 2197.03 ±0.04 ns (18ppm)
⇓ ⇓

±0.002 ns (1ppm)
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Muon Lifetime
The muon lifetime τµ is closely related to the Fermi coupling constant GF , which
sets the basic strength of the weak interaction:

1

τµ
=

G2Fm5µ

192π3

(

1 + δq
)

QED radiative corrections: Two-loop diagrams finished in 1999 by Stuart and van
Ritbergen∗; now known to < ± 0.3 ppm (previously ± 30 ppm)

Extraction of GF is now limited by the muon lifetime a truly fundamental
parameter of the standard model that should be measured as precisely as
possible with today s technology.

∗T. van Ritbergen and R.G. Stuart, Phys. Rev. Lett. 82, 488 (1999); and Phys. Rev. D 437, 201 (1998).
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How fundamental is GF ?
How electroweak corrections are related to muon decay?
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They are contained in the term ∆r

GF√
2
=

g2

8M2
W

(1 + ∆r )

which defines the Fermi constant in terms
of the SM weak coupling constant g

√
Predictive power in weak sector of SM

¦ Input: GF (17 ppm), α (4 ppb at q2 = 0), MZ (23 ppm)

¦ Top quark mass prediction: mt = 177± 20 GeV

¦ 2004 Update from D0 mt = 178± 4.3 GeV
√

Lesson learned in MZ

¦ Predicted precision at turn on of LEP ∼550 ppm

¦ Final precision achieved was ∼23 ppm

¦ What will the next generation of accelerators bring?
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Experimental status
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√
Experiments mostly statistics limited

√
PDG: τµ = 2.19703± 0.00004 µs (18 ppm)

√
Our goal: 1 ppm uncertainty in τµ (0.5 ppm in GF )
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1012 Statistics: more than one muon at a time
√

1 ppm measurement → at least 1012 stopped muons.
√

Each muon (or pion) enters target individually with pre– and post–quiet
periods. Watch for decay positron and record its time.

√
For 1012 muon, one need about 4× 107 s . . . several years

√
To be practical, we need to observe several muons at once:

Spatial separation Bunched muons
FAST MuLan
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Muon Lifetime Techniques
√

Burst of N muons arrives during accumulation period Tacc

¦ Observe muon decays during measuring period of length Tmeas

¦ No other muons arrive during this time
¦ Get another burst

√
Ideally:
¦ A small N =⇒ Reduces pileup
¦ Tacc + Tmeas ∼ 32µs =⇒ Cycles fast
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Pulsed Muon Beam
√

Collect handful of muons in a few µs Accumulation Period

√
Turn off beam and watch them decay Measurement Period
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Pulsed Muon Beam
√

Turn off beam and watch them decay Measurement Period
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πE3 Beamline

Beam Rate > 12 MHz; Spot at target, few cm2
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Fast Kicker
√

TRIUMF-built kicker
¦ ∼45 ns rise/fall time,
¦ ± 12.5 kV,
¦ two 75 cm plates

√
Extinction factor
¦ is quite subtle (seems

momentum
dependent)

¦ 1000 for simulated
kicker,

¦ > 400 with static field
on real kicker

√
Some bad news too . . .
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What can go wrong?
√

Rotation of average spin:
Target choice

√
Gain and threshold changes:
Stable electronics and PMTs

√
Pileup:
Segmented detector
and fast electronics
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Impact of muon spin rotation (µSR)
muon beam is polarized =⇒ muon precesses in magnetic field

Decay e+s are preferentially emitted in the direction of the µ+ spin.
Residual polarization effects will produce direction-dependent distortions in

the µ+ lifetime histograms.
Pointlike symmetric geometry; fit F +B, monitor with F −B

Arnokrome-3 (AK3) (30% chromium, 10% cobalt, 60% iron)
Internal Field ≈ 1 T.

No observable precession frequency up to 320 MHz or < B >= 2.4 T.
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Scintillators: 32–sided, soccer–ball geometry

The complete detector has 30 active “houses”, with 170 tile pairs
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The Crew
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“Sneaky Muons”
During beam-off period sneaky muons lead to time dependent background

high rate (MHz), thin, fast (30 ns FWHM) wire chamber
Efficiency >95%, stable within 5%

Active Area 94× 100 mm
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Beam Profile
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First physics fits
(the clock timescale is only approx in ns . . . and they don’t know the offset)

All kicked data summed up without too much screening
N(t) = N0e

−
t
τ +B

Better than 10 ppm and good, stable fits (so far)
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Fit Stability
Stability of fit parameters versus fit start time is a good barometer of fit quality
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Fit Stability
Also important, behavior of different detectors . . .
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Fit Stability
. . . and by run number, but . . .
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Fit Stability
. . . These fits started about 1.8 µs after kicker off

because of a nasty ripple in the data, probably from the kicker, but we are not sure
yet . . . we will figure it out

Conclusion on data:
We are hoping for a 5–10 ppm result by the end of the summer
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MuLan Future plans
√

June 2005:
¦ Beam Tuning to improve Rate and Extinction Factor

√
Fall 2005:
¦ First run with waveform digitizer
¦ New run with improved kicker
¦ First Production run with waveform digitizers

√
2006:
¦ Major production run with waveform digitizers

¦ Full proposed O(1012) statistics
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