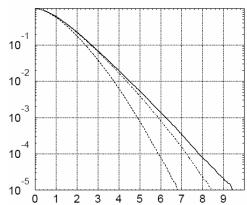

Diffusion: Overview

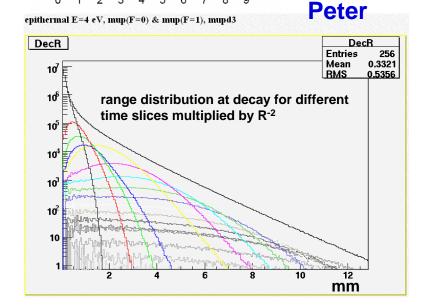
- **Theory and simulation**
- **Correction procedure a'la Steve**
- Run8 fits
- AMS measurements at ETH
- Result evaluation
- ToDo



Theory and simulation

- **Cross sections see hfs transition**
- pµ+p

Andrzej


Steve

The two-dimensional distribution function with phase-space included is

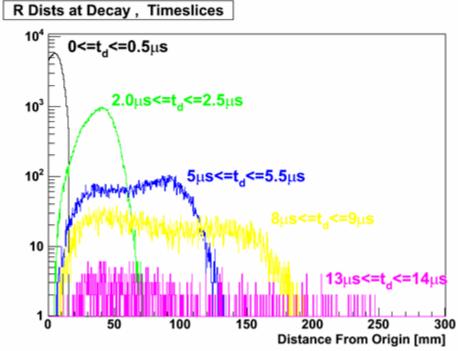
$$F_{\mu p}(R_d) = \frac{R_d}{\sigma_t^2} e^{-\frac{R_d^2}{2\sigma_t^2}}$$

with $\sigma_t = k\sqrt{t}$. k is something like 0.7 mm/ $\sqrt{\mu s}$ for μp under MuCap conditions:

t1	t2
0.00	0.20
0.20	0.40
0.40	0.60
0.60	0.80
0.80	1.00
1.00	2.00
2.00	3.00
3.00	4.00
4.00	5.00
5.00	6.00
6.00	7.00
7.00	8.00
8.00	9.00
9.00	10.00
10.00	12.00
12.00	14.00
14.00	16.00
0.00	16.00

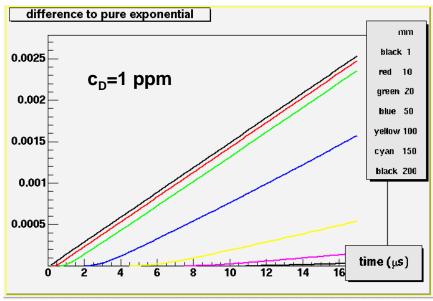
check and compare with MC, include initial non thermalized behaviour

Theory and simulation

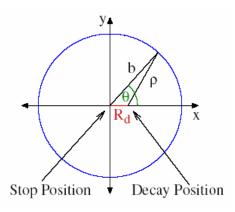

■ transfer: $p\mu + d \rightarrow d\mu + p$ (134 eV)

$$\Lambda_d = \phi \ c_d \ \lambda_d = 150/s \ *c_D(ppm)$$

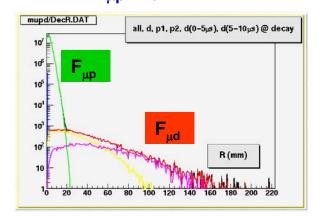
i.e. 3x precision goal at 0.1 ppm


■ dμ**+p**

Radial distributions for µd starting at t=0



Geometry study not finished. Where do dµ stop?

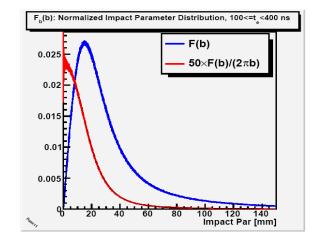

deviation from pure exp as funct of impact par cut

Correction procedure a'la Steve

$$F_{\mu\nu}(R_d)$$

we can trust this (PK) simulation only qualitatively

- d μ effect from zero extrapolation, assumption $F_{\mu d}(Rd)$ independent of cd<120 ppm
- p μ effect dominated by $F_{\mu p}(b)$ smaller $F_{\mu p}(R_d)$ dependence

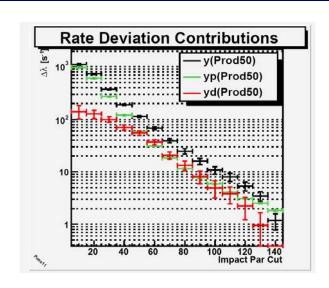

$$\epsilon_{bcut}(R_d) = \int_0^{b_{cut}} db \int_0^{2\pi} b \, d\theta \underbrace{F_b(\rho)}_{2\pi\rho}$$

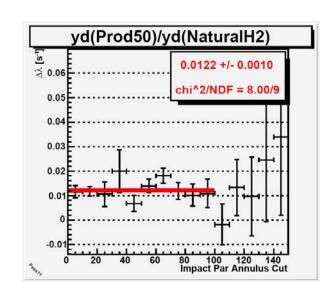
where ρ is found from the cosine law to be

$$\rho = \sqrt{R_d^2 + b^2 - 2R_d b \cos \theta}$$

$$\epsilon(b_{cut}) = \int_0^\infty dR_d \, \epsilon_{bcut}(R_d) F_{\mu p}(R_d).$$

$F_b(b)$

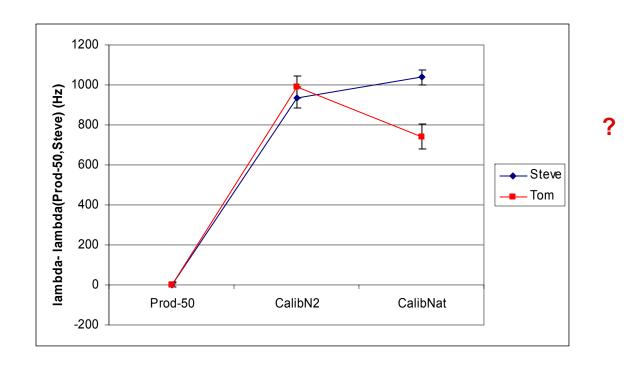

averaged $F_{\mu p}(b)$ accurately from data corrections to averaged distribution diffusion model dependence


Correction procedure a'la Steve

- 1. Adjust μp diffusion model (one parameter) to fix c_d independent $\lambda(b_{cut})$ part consistently for 3 c_d conc.
- 2. Determine remaining c_d proportional part of $\lambda(b_{cut})$
- 3. Extract $c = c_d(Prod50) / c_d(x)$ from ratio

$$\frac{\Delta\lambda(\mathsf{Prod50})\text{-}\Delta\lambda_{\mathsf{p}\mu}}{\Delta\lambda(\mathsf{x})\text{-}\Delta\lambda_{\mathsf{p}\mu}}$$

where x = NatH2 or CalibD2



Run8 fits

same cuts, statistics?

Fill	Steve			Tom		
	Y ^{EVH} (ppm)	$\lambda (\mathrm{s}^{-1})$	$\sigma_{\lambda} (\mathrm{s}^{-1})$	Y ^{EVH} (ppm)	$\lambda (\mathrm{s}^{-1})$	$\sigma_{\lambda} (\mathrm{s}^{-1})$
Prod-50	10.7 ± 0.1	455,434.0	12.1	12.9 ± 0.1	455,436.3	12.3
CalibN2	728.9 ± 2.8	456,370.4	53.0	774.9 ± 2.4	456,425.2	55.4
CalibNat	67.5 ± 0.6	456,471.7	35.5	48.6 ± 0.7	456,175.9	61.8

Run8 fits

Steve

Data Set	N	$\lambda [s^{-1}]$	В	B/N	χ^2/DOF	
		455434.0 ± 12.1				
		456370.4 ± 53.0				
		456471.7 ± 35.5				
CalibD2	2.155×10^{8}	455717.0 ± 33.4	309.2 ± 2.1	1.435×10^{-6}	1.03 ± 0.06	

Tom

Fill	ePC table	$\lambda (\mathrm{s}^{-1})$	$\sigma_{\lambda} \ (\mathrm{s}^{-1})$	χ^2/d
Prod-50	cathode-AND	455,428.06	12.86	0.964
	cathode-OR	455,436.29	12.33	0.998
CalibNat	cathode-AND	456,193.79	64.47	1.099
	cathode-OR	456,180.37	61.80	1.111

CalibD2 results?

same statistics and cuts start time scan not simple exp. effects

AMS results from ETH

Claude

Fill	c_d (ppm)	Method of determination
Prod-50 CalibD2		External measurements
	17.75 ± 0.25 126.9 ± 1.9	Claude calculation External measurements

ETH different bottle than run8 121 ± 6

Results

my evaluation of S&T results

Prod-50	Ste	ve	Tom		CalibNat	Steve		Tom	
	λ	err	λ	err		λ	err	λ	err
	455434.0	12.1	455436.3	12.3		456471.7	35.3	456175.0	61.8
Z>1	-13.9		-18.7	1.6		-88.0		-72.7	6.2
corr Z	455420.1		455417.6			456383.7		456102.3	
λ (nat) $-\lambda$ (prod)	963.6		684.7						
C Steve	82.0	?			C	model errors			
δλ μ d	-11.9	?	-8.5			other errors?			
C AMS	83.3	0.9				~-1			
δλ μ d	-11.7	1.2	-8.3		($\delta \lambda = \frac{-\tilde{c}^{-1}}{1 - \tilde{c}^{-1}} (\lambda_{calib} - \lambda_{calib})$		$-\lambda_{Prod}$),	
δλ μ p	-2.7	0.08?							
corr D/P	455405.5		455406.4						

Tom: stat. consistency?

	λ	λ	λ		Δ
	prod50	NatH2	NatH2- prod50		prod50
120	455434	456472	1038	\rightarrow	12.6
no	455420	456159	739	\rightarrow	9.0
diff	14	313		\rightarrow	3.8

Condition		Steve		Tom			
	$\Delta\lambda$ (s ⁻¹)	λ (s ⁻¹)	σ_{λ} (s ⁻¹)	$\Delta\lambda$ (s ⁻¹)	λ (s ⁻¹)	σ_{λ} (s ⁻¹)	
eSC-only		455,425.1	12.6		455,433.9	12.9	
cathode-OR	-5.3	455,419.8	12.2	-8.2	455,425.7	12.4	
cathode-AND	-4.2	455,415.6	12.6	-8.6	455,417.1	13.0	
cathode-OR		455,419.8	12.2		455,425.7	12.4	
cathode-OR, 120 mm impact cut	+14.2	455,434.0	12.1	+10.6	455,436.3	12.3	
remove scatters	-1.1	455,432.9	12.1	-4.5	455,431.8	12.3	
high- Z correction	-13.9	455,419.0	12.1	-18.7	455,413.1	12.4	
deuterium correction	-12.1	455,406.9	12.2	-8.6	455,404.5	12.5	
μp diffusion correction	-2.7	455,404.2	12.2	-2.8	455,401.7	12.5	

S&T results

Todo

- Solve CalibNat λ disagreement. Tom full statistics of CalibD2 and CalibNat. T&S differences.
- Reconsider effect of non exponential contributions.PK&B
- pμ model studies to check sensitivity and consistency of Steve's pμ diffusion results. PK, Adamzcak?
- MC challenge to Steve, to check his sophisticated formalism
 - Probably only fast MC realistic (needs discussion) PW
- consistency no/120mm impact cut, D&F
- Diffusion geometry MC (later?) who?