Ortho-para rate and neutron detectors

Motivation and Goal for aux. measurement

- Convincing proof of the internal consistency of the experiment by directly checking the underlying p

 μ and pp

 μ kinetics.
 - Really in situ constraint on λ_{op} , so it affects lifetime <10ppm
- At the time of the proposal we were expecting that the TRIUMF experiment would determine λ_{op} to 0.3x10⁴/s.

year	Method	$\lambda_{\rm op} (10^4/\rm s)$
1981	Exp LH2	4.1(1.4)
1982	Theory	7.1(1.2)
2004 prelim.	Exp LH2	12.2-13.6 (1.5)

- The situation is thus totally confused and not much guidance available from the literature.
- MuCap uses 1% of LH₂ density which, though not expected, might change λ_{op} from the measured value(s) at LH₂

Experiments

ŀ

Volume 104B, number 4

$$N(t) \simeq \exp(-t/\tau_{\mu})$$

$$\times \{1 + [(\lambda_{OM} - \lambda_{PM})/\lambda_{PM}] \exp(-\lambda_{OP}t)\}.$$
 (3)

Saclay, TopCite 50+

Exp	Neutrons	μp Neutrons	stat. error (10 ⁻³)	lifetime (ns)	error (ns)	rel error (10 ⁻³)	efficiency
Saclay	26746	17730	9.22	2084	30.00	14.40	
TRIUMF	405000	???	1.57	1909	26.00	13.62	
MuCap	240000	???	2.00		4.5	3.00	0.02

wild!

Kinetics study

The results are summarized in the following table.

210 100 100 100 100 100 100 100 100 100						
Kinetic assumption Rates in μs ⁻¹	Relative change in electron disappearance rate (ppm)	Relative change in neutron disappearance rate (ppm)				
$\lambda_{op} = 0.0, \lambda_{pp} = 2$	0	0	moment method			
	0	0	fit method (0.05-20 µs)			
λ _{op} =0.08, fit 0.05-20us	-11	5569	moment method			
	-12	5482	fit method			
$\lambda_{op} = 0.20$	-23	10468	moment method			
	-21.6	10330	fit method			
λ _{op} =0.20, fit 0.05-10us	-15	9306	fit me Electron and neutron time			
·			D- 4-0			

7054

6899

We should measure λ_{pp} too

e Electron and neutron time distribution devided by mu+ time distribution, normalized to identical initial point by Rs/r0

In[43]:= **Rs/r0**

mome

Plot[{ne[t]/ne0[t], nc[t]/ne0[t]r0/Rs}, {t, 0, 20}];

fit me Out[43]= 0.00145934

 $\Delta \lambda e = 10 \text{ ppm} \approx \Delta \lambda n = 5 \cdot 10^{-3}$

We need to measure $\Delta \lambda n$ to ~3 10⁻³!

-18.4

-17.6

(At present $\Delta \lambda n = 14 \ 10^{-3}$)

 $\lambda_{pp}*1.5$

Statistics and systematics

Statistics

• should be ok for 10¹⁰ μ, if BG small

Systematics

- accidental BG
 - accept only n with no decay electron, 0.7 accidental suppression ?
 - fit can start at t=0, but detectors further away than Saclay, TRIUMF
 - shielding difficult (tent)
- other BG (wall stops etc)
 - much better than previous experiments
- Distortions due to n-det deadtime?

Depending on success, we will decide

- 8 detectors 2006 (3 in 2005)
- special high density run?

Technique

- start with classic PulseShape circuit (borrow more?)
- implement FADC once they are available

Demon detectors from Rene

NIM A 365 (1995) 446-461

Each DEMON cell is a cylinder of 16 cm diameter and 20 cm length, designed with an expansion volume and painted with TiO, white reflector. A cell contains 4 liters of liquid scintillator NE213 in an aluminium container having a 6.35 mm thick front entrance and a 21.5 mm thick wall. The cell back window of 10 mm thick glass is directly coupled to a 130 mm diameter XP4512B magnetically shielded fast PM. The tube is supplied with a grounded anode divider which, for the recommended supply voltage (V) of 1700 V, typically ensures a gain of 5.0×10^6 . The standard anode pulse rise time is 2.1 ns, the intrinsic PM pulse duration at half maximum is 3 ns and the signal transit time is (49 ± 1.3) ns for full cathode illumination. The manufacturer gives a slope of log(gain)/log(supply voltage) = 7.5. A lead absorber of 5 mm thickness is used in front of the cell to lower the exposure to low energy y-rays, thus allowing a reduction of the n-y discrimination threshold.

The neutron mean free path λ as a function of neutron incident energy $\lambda(\text{NE213})=21.3(\text{cm})/(K\sigma_H+\sigma_C)$, with ρ (volumic mass)=0.874 g/cm², K=1.213, the (H/C) ratio, σ_H and σ_C the total reaction cross sections of neutron interactions with hydrogen and carbon media. Next columns display Monte Carlo simulations of the mean "minimum" distance-of-penetration \bar{x} along the cell axis and the mean response time-of-flight (\bar{t}_d) of a DEMON cell and their corresponding standard deviations σ_v and σ_{vd} . The last column displays the calculated intrinsic efficiencies at 0.2 MeVee detection threshold [11]

E _n [MeV]	λ [cm]	<i>x</i> [cm]	σ_{λ} [cm]	\bar{t}_{d} [cm]	σ_{i_d} [ns]	Intrinsic e	Intrinsic efficiency [%] $\epsilon_{_{n+\gamma}}$	
5	7.94	7.07	5.33	3.30	1.83	71.94	~0.65 @	
10	11.02	7.77	5.55	2.47	1.36	58.18	5.2MeV	

Mounting structure and plan

-outer detector diameter: 216 mm

-length of the detector: 500 mm

+ 120 mm for base

-diameter of the base: 110 mm

-inner frame ring diameter: 218.6 mm for non strictly circular outer detector tube

-length of the frame ring: 150 mm

-thickness of the frame ring: 15 mm

Questions

- 10" or 12" bars ?
- 2 detectors per bar ok?
- symmetric arrangement?

Proposed installation

- dismount upper barrel
- n detectors upper barrel only
- inventor

