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Muons decay via the weak interaction 
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• Modern Feynman diagram 

• Fermi contact-interaction • Rate depends on GF , 
    strength of weak interaction 
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• GF relates to gauge coupling  



A negative muon can be captured by a proton 
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• Current-current weak 
interaction 

4 

 
 

• Leptonic and hadronic   
left-chiral projections 

m- 
p Rate LS 



The quarks involved in muon capture are embedded 
in a nucleon; the hadronic current must be modified 
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• CVC + G-Parity 

•  gS , gT  0 
 

 
 

• CVC + Electron scattering   
• gV(qm

2) = 0.976 ± 0.001 
 

• gM(qm
2) = 3.583 ± 0.003 

• Neutron beta decay  
• gA(qm

2) = 1.247 ± 0.004 

 
• This leaves gP  

• Known with 50% 
uncertainty 

 
 



Spontaneous Symmetry Breaking connects gP 
to the pion 

• Axial (PCAC) 

• 𝜕𝛼𝐴𝛼 = 0 (chiral limit) 
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• Vector (CVC) 

• 𝜕𝛼𝑉𝛼 = 0 

• Nambu realized: 
– If 𝐴𝛼 conserved: 

• Chiral symmetry is spontaneously broken  

• A massless pseudoscalar exists 

– Explicit chiral breaking 
• 𝜕𝛼𝐴𝛼 (𝑥) ∝ 𝜑 𝑥  (pion field) 

• The (massive) pion is the pseudo-Nambu-Goldstone boson 

 

 

 

2008 Nobel Prize 
 

• Historic milestone: 
– Foundation for the generation of particle masses 

– Led to development of chiral perturbation theory, low-energy effective 
field theory of fundamental QCD 

 

 

 



Modern theory makes precise predictions for gP 
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• Chiral Perturbation Theory (ChPT) 

• Effective field theory 
• Systematic low-energy expansion valid for q 

small compared to chiral scale 

 

 
gP     =   (8.74  0.23)  –  (0.48  0.02)      =   8.26  0.23 

ChPT    leading order       one loop       two-loop <1% 
 

See Kammel and Kubodera. Annu. Rev. 
Nucl. Part. Sci. 2010. 60:327-53 

• ChPT makes a precise prediction for gP 
(2.8% ) 

• We should test it ! 

 (8.74  0.23)  –  (0.48  0.02)  

                                                  LS      = 711.5 ± 4.6 s-1(0.65%) 
 

Theory 



The experimental determinations of gP prior to 
MuCap were far less precise 
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Experimental Requirements 



MuCap experimental requirements 

•Use a low-energy muon 
beam  

•Stop in a specially prepared 
pure hydrogen target 

•Image the stopping muon 
(TPC) 

•Measure the disappearance 
rate  

•Compare to the positive 
muon lifetime (MuLan) 
  4/6/2012 

Brendan Kiburg, University of 
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How can one measure the capture rate, LS ? 
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Could try a direct measurement 
• Limited by knowledge of absolute detection efficiency  
• Past efforts produced ~10% precision 



MuCap uses the lifetime method to determine the 
capture rate, LS 
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MuLan! 

  %16.0 +- -mm
l

We observe the electron 
from muon decay. 

        (~700 s-1) 
  
  
  (~455000 s-1) 

 
 

𝝁− + 𝒑 → 𝒑 + 𝒆− +  𝝊𝒆 +  𝝊𝝁 

m- 
p 



The MuLan Experiment 
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MuLan! 



Kicker On 

Fill Period 

Measurement Period 

The experimental concept… 

time 

N
u
m

b
e
r 

(l
o
g
 s

c
a
le

) 

Real data 

170 Inner/Outer 
tile pairs 450 MHz 

WaveForm 
Digitization 
(2006/07) 
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MuLan! 



In 2011, MuLan published a new result for the 
positive muon lifetime 
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• New MuLan result (Webber et al. PRL 106, 2011) 
 

       (1 ppm ) 
 
       (0.6 ppm) 
 

 

•      

•      

•      

MuLan! 



Hydrogen Target Requirements 
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Poorly known parameter 

Past experiments were very sensitive to a 
poorly known parameter of muon chemistry 
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LS 

m- 

mp 
Triplet 

mp 
Singlet 

LT 

The muon 
kinetics are rich 
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• Decay from any state 
• Atomic capture 
• Populate singlet  
    state 10 ns 

 

• LS  ~ 700 s-1 

• LT  ~ 12 s-1 

• Strong spin  
     dependence 



LS 

mp 
Singlet 

Ortho- 

ppm 

Para- 

ppm 

flof 
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lop 

Lpm 
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Poorly 
known! 



Molecular formation distorts the disappearance rate 
of the mp system, in a time-dependent way 
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• Capture rate depends on spin configuration 

• LS  ~ 700 s-1 

 
• LOM  ~ 3/4 LS (540 s-1) 

• LPM  ~ 1/4 LS (210 s-1 )  

• Molecular formation rate is a function of hydrogen density, f 

• Relative population is a function of kinetic rates (lof ,lop) 



MuCap is designed to be mostly insensitive to the 
molecular complexities 
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*MuCap design is drawn centered on the theory value 

* 
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High-Z impurities have a larger capture rate and 
should be removed from the target 
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• Active TPC  
• No materials in 

fiducial volume 

• CHUPS purifies the gas continuously 

• cN       < 7 ppb 
• cH2O < 10 ppb  

“High-Z” = Z > 1 
L𝑍 ∝  𝑍4 



LS 

mp 
Singlet 

l0 

mZ 

LZ 

fcZlpz 

Impurity 

md 
Deuterium 

fcdlpd 

Ld 

Ortho- 

ppm 

Para- 

ppm 

flof 

flpf 

flop 

Lom 

4/6/2012 Brendan Kiburg, University of Washington 24 



md diffusion 
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• “Good” muon stop  
• md diffusion (cm / tm ) 
• High-Z capture 
 
 
 

m forms md atom  
Ramsauer-Townsend minimum 
 

cd < 6 ppb 

Cryogenic distillation column 
Isotopic separation 
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The careful choice of operating conditions 
makes this experiment possible 
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For 10 ppm, we need more than 1010 muons ... 

 πE3 Beamline, 
 Paul Scherrer Institut,  
Villigen, Switzerland 

• 1.3 MW beam; 2.2 mA, 590 MeV protons 



The experiment is conducted in the pE3 beamline at PSI 
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• Muon On Request 
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One muon at a time 
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m 

Muon 

entrance 
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TPC 

One muon at a time 
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One muon at a time 
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~3 times higher rate 
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The MuCap Detector 
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tm = 0 

t = tel 

15 cm 



The decay time is histogrammed and fit with an 
exponential plus background 
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The TPC images the muon stop 
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• 10 bar ultra-pure H2 

• Bakeable glass/ceramic 
materials 

• No materials in the 
fiducial volume 

MWPC 



The TPC images the muon stop 
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• 10 bar ultra-pure H2 

• Bakeable glass/ceramic 
materials 

• No materials in the 
fiducial volume 

m-p 

 

 

E 
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MWPC 



The collection of charge on anode wires generates 
pulses, which are digitized into pixels 

Clock Ticks(200 ns) 
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EL - threshold 
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E above threshold at clock  

boundary generates pixels 

EVH discriminator 
threshold 



A sample event 

TPC active volume TPC active volume 

Fiducial volume Fiducial volume 

Front face view 

muon beam direction 
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How can we get the capture rate wrong? 

• Acceptance of events that fake a good stop, 
but actually stop in other materials 

 

 

 

• Any “early-to-late” changes in muon 
acceptance 

– If the decay electron changes the probability that 
we identify the muon stop as “good” in a time-
dependent way 
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Energy deposition from decay electrons can modify pixels in 
a muon track 
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(b) Charge drifts 
towards MWPC  

(c) Decay electron 
deposits energy  

(d) Augments 
pixels 

(a) m enters TPC & 
Ionizes gas 
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The interference is time- 
and space-dependent 
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N Blue Pixels 

N Blue Pixels 



Consistency Checks 
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The disappearance rate is independent of azimuth 
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The disappearance rate is independent of run number 

Data run number (~3 minutes per run) 
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Start and stop-time-scans demonstrate consistency 
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Results 
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10 times increased statistics 

Year Statistics 
[1010 muon decays] 

Comment 

m- m+ 

2004 0.16 0.05 published * 

2006 0.55 0.16 This talk 

2007 0.50 0.40 This talk 

Total ~1.21 ~0.61 ~60TB raw data 

 Remember: l+ known to 1 ppm from MuLan!   

*V.A. Andreev et al., Phys. Rev. Lett. 99, 03202 (2007)    



Blinded measurement 

500 MHz precise master clock 

Analyzers add secret offset 

Detune clock  
 Hide from analyzers 
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Double 



Double blinded 

~700 s-1 
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Relative unblinded 

~700 s-1 

rates with secret offset, stat. errors only 
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Fully Unblinded 

~700 s-1 
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Systematic corrections and errors 

Systematic errors Run 2006 Run 2007 Comment 

 l (s-1) dl (s-1) l (s-1) dl (s-1) 

High-Z impurities -7.8 1.87 -4.54 0.93 

mp scatter -12.4 3.22* -7.20 1.25* * = prelim. 

mp diffusion -3.1 0.1 -3.0 0.1 

Fiducial volume cut 3.0 3.0 

Entrance counter inefficiencies 0.5 0.5 

Choice of electron detector def. 1.8* 1.8* * =prelim. 

Total -23.3 5.14§ -14.74 3.88§ § = correlated 



Impurity monitoring  

2004 run:   cN < 7 ppb, cH2O~30 ppb 

2006 / 2007 runs:   cN < 7 ppb, cH2O~10 ppb 

Imp. Capture:            

             m- Z  (Z-1) n n 
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Final high-Z impurity correction 

l 

0 

Production Data 
Calibration Data 

(nitrogen added to 

production gas) 

Extrapolated 

Result 

Observed capture yield YZ 

Lifetime deviation is linear with the Z>1 capture yield. 
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External corrections to l- 

molecular formation 

bound state effect 

LS (MuCap prelim.*) = 714.5 ± 5.4stat ± 5.4syst s
-1 

LS (theory) = 711.5 ± 3.5 ± 3 s-1 

* Small revision of molecular correction might affect LS < 0.5s-1 and syst. error 



Precise and unambiguous MuCap result 
solves longstanding puzzle 

 

gP(theory) = 8.26 ± 0.23 

gP(MuCap prelim.) = 8.1 ± 0.5 



http://muon.npl.washington.edu/exp/MuCap/ 
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Subset of MuCap 
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http://muon.npl.washington.edu/exp/MuCap/


Precise and unambiguous MuCap result 
solves longstanding puzzle 

 

gP(theory) = 8.26 ± 0.23 

gP(MuCap prelim.) = 8.1 ± 0.5 


