Arrays of digital Silicon Photomultipliers
Intrinsic performance and Application to Scintillator Readout

Carsten Degenhardt, Ben Zwaans, Thomas Frach, Rik de Gruyter

Philips Digital Photon Counting
NSS-MIC Conference, November 2nd, 2010
How to replace old-fashioned PMTs?

• Take the digital SiPM
 – 1 pixel

• Increase integration
 – 2 x 2 pixel on one chip

• Assemble arrays
 – 8 x 8 pixels on one PCB
Digital Photon Counting – The Concept

Intrinsically, the SiPM is a digital device: a single cell breaks down or not

analog SiPM

Summing all cell outputs leads to an analog output signal and limited performance

digital SiPM (dSiPM)

Integrated readout electronics is the key element to superior detector performance

- Number of photons
- Time-stamp
Digital silicon photomultiplier technology

The principle
Digital silicon photomultiplier technology

The principle
Digital silicon photomultiplier technology

The principle
Digital silicon photomultiplier technology

The principle
The digital SiPM array

Features

- 8 x 8 digital SiPMs (on 4 x 4 chips)
- 6400 diodes per pixel
- ~ 11 cm2
- 4-side tiling possible

Inputs
- 1.8 V, 3.3 V, 30 V
- JTAG (test and configuration)
- 200 MHz reference clock
- External trigger input

Outputs
- 100 MHz serial data (photon count, timestamp)
- Event detect trigger
Measurement setup (1)

- dSiPM array
- Clock, Config, Data
- Coincidence detection
- FPGA board
- USB connection
- PC
Intrinsic timing performance

Timing jitter over full delay range: 44 ps FWHM

(44 ± 1) ps FWHM
Measurement setup (2)

dSiPM array → psec-laser → dSiPM array

Clock, Config, Data → FPGA board → Coincidence detection → FPGA board → Clock, Config, Data

USB connection → PC
Timing performance

Timing jitter over full delay range: 59 ps FWHM
Measurement setup (3)

- dSiPM array
- LYSO scintillator array
- Clock, Config, Data
- Coincidence detection
- USB connection
- PC
- FPGA board
- Clock, Config, Data
Scintillator readout

Floodmap

- LYSO array, 8 x 8 crystals, 4 mm x 4 mm pitch, 22 mm length
Scintillator readout

Energy resolution

12.1 % FWHM

- LYSO array, 8 x 8 crystals, 4 mm x 4 mm pitch, 22 mm length
- Saturation was corrected
Scintillator readout

Energy resolution

- LYSO array, 8 x 8 crystals, 4 mm x 4 mm pitch, 22 mm length
- Saturation was corrected
Scintillator readout

Timing resolution

- LYSO array, 8 x 8 crystals, 4 mm x 4 mm pitch, 22 mm length
- Summed timing of all 8 x 8 crystals
- Timing mainly limited by photon statistics (CRT with 3x3x5 mm³ LYSO: 153 ps)
Scintillator readout

Timing resolution

Two sources 8.3 cm apart

\[\Delta t = 570 \text{ ps} \]
\[\cong 8.6 \text{ cm} \]
Small crystal readout

LYSO array, 30 x 30 crystals, 1 mm x 1 mm pitch, 10 mm length

Data analysis by P. Düppenbecker, see talk M03-4
Summary

- Arrays of 8 x 8 digital SiPMs operational
- Intrinsic timing resolution: 59 ps FWHM
- Performance with LYSO scintillator arrays
 - ~12 % FWHM energy resolution
 - 328 ps FWHM coincidence timing resolution
 - Mainly limited by number of detected photons
Next Steps

- Optimize the detection (crystal coupling, anti-reflection coating, fill-factor, …)

- Build detector modules

- Work together with partners to explore further applications
Talk N58-1 (Thu, Nov 4th, 8:00am, Ballroom G)

Visit us at
• Booth #105
• www.philips.com/digitalphotoncounting