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Abstract

A measurement is presented of the rate ΛS of ordinary muon capture on the proton from the

singlet µp atomic state. Negative muons were stopped in a time projection chamber operating

on ultrapure, deuterium-depleted hydrogen gas at 10 bar and room temperature. Under

these conditions molecular formation amounts to a small correction, and ambiguity in the

interpretation due to a poorly-known molecular transition rate is avoided. The disappearance

rate of the negative muons was determined from the time spectrum of their decay electrons.

After some small corrections, the difference of this rate from the world average positive

muon (inverse) lifetime is attributed to ΛS. The result is ΛS = 725.0± 13.7stat± 10.7syst s−1,

which determines the proton’s pseudoscalar coupling to be gP (q2 = −0.88m2
µ) = 7.3 ± 1.1,

consistent with theoretical predictions based on chiral perturbation theory. This is the

final result of the analysis of data accumulated by the MuCap collaboration in their 2004

experimental running period.

The MuCap experiment, the data analysis leading to the result for ΛS, and contextual

information are described in this dissertation. In the first chapter, a brief historical review of

previous measurements of muon capture on the proton introduces many of the experimental

challenges. The next chapter covers the standard-model phenomenological calculation of ΛS

and knowledge of the proton’s weak form factors, and results of modern calculations using

chiral perturbation theory are quoted. The subject of muon atomic and molecular kinetics in

hydrogen, important for understanding many of the key features the experiment, is discussed

in Chapter 3. The MuCap experimental design and apparatus are presented with selected

details in Chapter 4. The next two chapters cover data analysis, evaluations of systematic

corrections and uncertainties, and demonstrations of internal consistency of the ΛS result

with variations of analysis parameters. The dissertation concludes with a results chapter, in

which the the method used to determine gP from the experimental result for ΛS is shown.
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Chapter 1

Introduction

1.1 Context

The basic process of ordinary muon capture on the proton,

µ− + p→ n+ νµ, (1.1)

provides a theoretically clean, electroweak probe of the nucleon. Like neutron beta decay,

ordinary muon capture is sensitive to the low-energy electroweak form factors of the nu-

cleon, the vector and axial-vector couplings gV and gA. Because of the higher momentum

transfer in muon capture, the process is additionally sensitive to recoil-order terms, in par-

ticular the pseudoscalar coupling gP . Although there is a standard-model prediction based

on symmetries of quantum chromodynamics, no precise, unambiguous measurement of the

rate of ordinary muon capture on the proton was achieved until this year, when the Mu-

Cap collaboration released their first result from the experiment that is the topic of this

dissertation.

Muon capture proceeds from the ground state of a µp atom, which is similar to a hydrogen

atom with the electron replaced by a muon. Due to the larger mass of the muon compared

to the electron, mµ ≈ 200me, the Bohr radius of the µp atom is approximately 200 times

smaller than that of the hydrogen atom. The large mass of the muon also makes the capture

process kinematically possible, unlike electron capture on an isolated proton. The muon in

a µp atom disappears predominantly through decay into an electron and two neutrinos,

µ− → e− + νe + νµ, (1.2)

at the same rate (aside from a small bound-state correction) as positive muon decay, λ+
µ ≈

455000 s−1. Process 1.1, for a µp in the state with total spin F = 0, occurs at the predicted

rate ΛS ≈ 700 s−1, about 0.15% of the of the muon decay rate.
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(a) Photograph. (b) Sketch.

Figure 1.1: (from Ref. [1]) Example photograph and accompanying sketch of muon stops in
a liquid hydrogen bubble chamber. Three muons, identified as such by their curvature and
range, entered from the upper left edge of the fiducial region shown in the image. Two of
the muons decayed into electrons, while the third (stopped in the lower part of the region)
did not have a decay electron track. The short line segment some distance from the stop
was interpreted, based on its range and angle, as a proton recoil induced by the 5.2-MeV
neutron from muon capture on the proton.

Experiments to measure the capture rate on the proton involve stopping muons in a

hydrogen target to prepare the muon–proton bound state. Compared to muons on any

other nucleus including other isotopes of hydrogen, the binding energy of the µp is the

smallest. Muon transfer rates away from the proton to isotopic or elemental impurities in

the hydrogen target are high, setting strict purity requirements. The all-neutral final state of

capture on the proton makes direct detection difficult. A survey of previous measurements

will help explain important experimental challenges.

1.2 Previous Measurements of Muon Capture in

Hydrogen

1.2.1 Early Observations

The first direct observation of muon capture in hydrogen, reported by Hildebrand in 1962 [2],

was based on stopping negative muons in a liquid hydrogen bubble chamber. An incident

2



muon was identified by its range in hydrogen and the curvature of its track in the 20 kG

applied field. Muon capture on the proton was identified by two characteristics: 1) the

absence of a decay-electron track, and 2) the appearance of a short track, some distance from

the muon stop position and consistent with a recoil proton from n+ p scattering, where n is

the 5.2-MeV neutron originating from the muon stop position. The example bubble-chamber

event in Fig. 1.1 is copied from the review by Mukhopadhyay [1], who credits Hildebrand

for the photograph. Hildebrand notes [2] that the cut on neutron energy, effected through

kinematic requirements (range and angle) on the recoil proton, were important to reduce a

large contribution from low-energy background neutrons. Many photographs were analyzed:

out of Nstop = 2.35 × 103 muon stops, Nrec = 26 ± 7.2 were identified as resulting in muon

capture on the proton. The efficiency ε to detect a recoil proton from the 5.2-MeV neutron

was reported to be ε = 0.120. The rate of muon capture on the proton was thus determined:

Λc =
Nrec

εNstop

= 420± 120 s−1. (1.3)

This result, Hildebrand explains, first of all confirms that muon capture does occur in liquid

hydrogen, and second, the rate is consistent with the V −A theory while ruling out the V +A

version. The target conditions of this early measurement were not ideal due to relatively

high concentrations of deuterium (cd = 22±2 ppm) and Z > 1 impurities (cZ up to 1 ppm);

however, improvements were anticipated.

A series of measurements in liquid hydrogen followed, employing targets of higher purity

(both isotopically and elementally), and some recording higher statistics via external neutron

counters. In these experiments the predominant initial state in the capture process was the

pµp molecule, which formed quickly at the high density of liquid hydrogen. Interpretation

of the capture rate in terms of basic physical parameters is hampered in particular by

uncertainty in the transition rate λop from the ortho pµp molecular state, which is the one

initally formed, to the lower-energy para pµp molecular state, in which the capture rate is

approximately three times lower than in the ortho state. Dependence on knowledge of λop

can be avoided by reducing the hydrogen density, such that the molecular formation rate is

low and most captures occur from the µp atomic state.

1.2.2 Ordinary Muon Capture in Hydrogen Gas

The first measurement of muon capture on the proton designed to eliminate molecular for-

mation employed a pressure vessel filled with deuterium-depleted hydrogen (protium) at

3



8 atm pressure and room temperature. The experiment is summarized here following the

description by Alberigi Quaranta et al. in their Physical Review article published in 1969 [3].

The number Nn of detected neutrons from the capture process was measured, and the

singlet capture rate was determined from [3]

Λexpt
S = λ0

Nn

Nµεn
l

(
1 +

Nnl

Nµεn

)
, (1.4)

where Nµ is the number of muons stopped in the gas, λ0 is the muon decay rate in the absence

of capture, l = 1.01 is a correction factor for the small amount of molecular formation, and

εn is the overall neutron detection efficiency. The experiment had to cope with backgrounds

from several sources. Experimental challenges, and the ways they were overcome, include

the following:

1. Captures on impurities in the gas. The transfer rate of the muon from µp to any

impurity atom is high, and the capture rate is much higher on Z > 1 nuclei than on

the proton. The target gas was cycled through a Pd filter on a daily basis to maintain

impurities at a level of less than 1 ppm.

2. Bremsstrahlung γ-rays from decay electrons. The muon is ∼ 103 times more likely to

decay into an electron than capture on the proton in a µp atom, and γ’s produced by

the decay electrons have the same time distribution as neutrons from the µp capture

process. Pulse-shape discrimination was used to distinguish neutrons from photons,

and the authors note this selection “turned out to be essential.”

3. External sources (flat background). The flat background was measured and subtracted

from the data.

4. Captures from muons that stop in wall material. The spatial distribution of muon

stops in the target is very broad due to the low density of the hydrogen gas. It

is unavoidable that some stop in wall material of a practically-sized pressure vessel

containing the hydrogen. The solution was to delay neutron counting by 0.8 µs, by

which time muons that stopped directly in the stainless-steel walls had disappeared

through capture.

5. Diffusion of the µp, by as much as ∼ 3 mm, into wall material and subsequent capture.

Delaying the start-time of neutron counting does not help, since diffusion into walls

by µp atoms formed nearby takes place over an extended time. Studies indicated

4



Figure 1.2: (from Ref. [3], legend rearranged) “Simplified scheme of the experimental ar-
rangement used to measure the nuclear capture rate of negative muons by free protons in a
gaseous target.”

that as many as 2% of all muon stops within the volume could diffuse into the walls,

which would completely swamp the desired measurement. The solution was a series of

proportional counters, covering the interior surface of the pressure vessel and operating

on the protium gas itself, to veto muons that stop within 4.4 cm from the walls.

A diagram (from Ref. [3]) of the experimental apparatus is shown in Fig. 1.2. The key

challenge was to count only the events in which muons stopped within the pressure vessel

and well-away from any Z > 1 material. The proportional counters (PC’s) designed for this

purpose are named α, β, and γ, and their active regions are indicated in the diagram. PCα,

inside the vessel at the upstream end, detected incident muons. PCβ was at the downstream

end to detect muons that stopped too far downstream. The wires of PCγ ran parallel to the

beam axis and were evenly spaced at a constant diameter from the centerline. This defined

an active region between the inner pressure vessel wall and a coaxial cylinder composed of

stainless-steel ground wires positioned ≈ 4 cm within the vessel wall. The fiducial volume V

was specified in the logic by αβ̄γ̄; it comprised a cylinder of hydrogen gas 491 mm long and

172 mm in diameter, separated from the vessel wall by 4.4 cm. Since wires of the proportional

counters defined the surface of V , it was possible for muons to stop directly in or diffuse into

these wires without being detected. By the time counting started, 0.9 µs after the muon

5



Figure 1.3: (from Ref. [3]) “Experimental time distribution of the neutron events after
subtraction for the accidentals. The two straight lines correspond to the two components
with 0.2 µs (iron events) and 2.2 µs (hydrogen events) lifetime. The TPHC figure was
2.95 ns/channel. The arrow shows the time cut used in the analysis.”

entrance, most muons that stopped directly in iron (stainless steel) had captured. The effect

of remaining neutrons from capture on iron are visible in the neutron time spectrum shown

in Fig. 1.3. The time spectrum was fit with the sum of two exponential decay curves to

extract the number of events with the ≈ 2.2 µs lifetime, which were attributable to stops

in hydrogen. They found the number of neutrons from muon capture on the proton to be

Nn = 315± 23 [3].

In addition to selecting events prepared in the µp atomic state, the further information

required to apply Eq. 1.4 are the relevant number Nµ of µp atoms examined and the overall

efficiency εn to detect any neutrons resulting from these Nµ atoms. A modified version of

Eq. 1.4 was used [3]:

Λexpt
S = λ0

Nnεe
Neεn

l

(
1 +

Nnεel

Neεn

)
, (1.5)

in which Nµ is replaced (to a good approximation) with the number Ne of observed decay

electrons from stops in V , divided by the overall efficiency εe to detect these electrons. The

electrons were counted with the same detectors used for neutron counting but running in

a charged-particle-selection mode. Neutron-counting and electron-counting data were taken

alternately, and Ne was normalized to the same number M∗
tot of “master trigger” events

(beam muons defined by coincidence of scintillation counters 1 and 2) as were present in the

neutron-counting data. The result was Ne = (5.07± 0.05)× 105 (per M∗
tot master triggers),

with an additional background level of 2%.

Evaluation of the overall efficiencies of neutron detection (εn) and of electron detection
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(εe) required Monte Carlo calculations, which included models of beam distributions, mul-

tiple scattering, and detector acceptances and responses. In the case of εe, the acceptance

solid angle Ωe was calculated to be 12%, and the detector efficiency W for electrons had

been determined experimentally to be W = (74 ± 2)%. The calculation of εn depended on

details of the neutron counter and the various materials in the experimental apparatus. The

result was εn = (3.90± 0.15)%, and the authors note that the uncertainty was estimated by

varying model parameters in the calculation.

In summary, the first measurement of muon capture in hydrogen gas reported [3] Nn =

315± 23, εn = (3.90± 0.15)%, Ne = (5.07± 0.05)× 105, εe = ΩeW = (8.88± 0.27)%, leading

to the result via Eq. 1.5 (with l = 1.01) of

Λexpt
S = 651± 57 s−1. (1.6)

Although the total number of beam muons was reported to be ≈ 4.5 × 109, the fiducial

cuts and low detector efficiencies reduced this to an effective number of µp observed of

approximately εnNe/εe = 2.2 × 105. The uncertainty in the result appears to be statistics

dominated (by 1/
√
Nn) for a final precision of 7.3%, but uncertainties in the overall neutron

and electron detection efficiencies are not far behind at 3.8% and 3.0%, respectively.

An independent measurement of muon capture in hydrogen gas at 41-atm pressure was

reported a few years later by Bystritskĭi et al. [4]. Their measurement also involved de-

tection of the 5.2-MeV neutrons, but they did not have proportional counters within the

hydrogen volume to define stops away from the walls. Diffusion of µp into the walls was

therefore significant, contributing, they report, a background of 20–30%. Special studies of

this background were undertaken in order to accurately remove these events from the data.

They reported a µp capture rate of ΛS = 686 ± 88 s−1 based on “278 ± 33 events of this

type.” The uncertainty in ΛS of 13% appears to be dominated by systematic uncertainties.

1.2.3 Ordinary Muon Capture in Liquid Hydrogen

The most accurate measurement of muon capture in hydrogen prior to the MuCap exper-

iment utilized the lifetime technique to measure the capture rate in liquid hydrogen. The

disappearance rates λ−µ of the µ− and λ+
µ of the µ+ were measured, and (apart from some

small corrections) the capture rate Λc was given by

Λc = λ−µ − λ+
µ ; (1.7)
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Figure 1.4: (from Ref. [5], an experiment to measure muon capture in liquid hydrogen)
“Simplified scheme of the experimental arrangement: Pd = lead collimator; Cu = copper
degrader; C = copper vessel; T = steel chamber; SC = plastic scintillator telescopes.”

that is, the higher disappearance rate of the µ− compared to the µ+ is attributed to capture

on the proton. The experiment, performed at Saclay in 1980 and described in an article

by Bardin et al. [5] (with some additional details in Ref. [6]), is quite different than the

measurement in hydrogen gas described above. The high density and low temperature (22 K)

of the liquid hydrogen target each sharply reduce the diffusion length of µp atoms. This fact,

combined with the narrower stopping distribution of muons obtainable in the denser target,

rendered unnecessary the proportional counters of the gas experiment. Instead, the approach

was to avoid muon stops in low-Z materials except hydrogen and delay electron counting until

most muons on high-Z materials had disappeared. Since it was a lifetime measurement, the

detector efficiencies did not need to be known absolutely, thus circumventing a key difficulty

in the neutron counting experiments.

The liquid hydrogen was required to be of extremely high purity, both in terms of Z > 1

elements and deuterium. Careful preparation of the sample volume, and filling the hydrogen

into the volume through a palladium filter, reduced Z > 1 impurities to the required level

of 10−8 (as deduced by tests with the Pd filter [6]). Continued outgassing from the sample

volume walls, a typical problem in very clean systems, was expected to be negligible because

of the the low temperature of the target. A deuterium concentration of cd = 2.7±0.1 ppm was

reported based on mass spectrometer analysis; this amount turned out to be non-negligible,

and a correction of −18± 4 s−1 to λ−µ was required.

A diagram of the experimental apparatus is shown in Fig. 1.4. The electron detectors

were scintillator tiles arranged into six independent electron telescopes of three layers each.

The authors state that 90% of incident muons stop in hydrogen, 10% in copper or lead, and

stops in plastic (scintillator) or other low-Z material were fewer than 10−4 per incident muon.

The beam was structured: a 3-µs-long burst arrived every 330 µs. Each data-taking interval
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was gated to begin 1 µs after the end of a beam burst and last 65 µs, and detector times

were relative the start time of the gate. Only the time of the first three-fold coincidence

in a given beam telescope was recorded per gate; in about 10% of the gate periods, a

subsequent hit in the same detector occurred and triggered a pileup condition, according to

which the data from that period were discarded (referred to as “multiple rejection” in [5]).

A correction to the lifetime result for residual pileup — in particular from events in which

a subsequent electron was missed due to detector deadtime or inefficiency — was effected

by a zero-extrapolation procedure, in which special runs with high beam rate were taken

to observe the change in lifetime compared to the production data with lower beam rate.

The corrections for residual pileup were −55 s−1 to λ−µ and −100 s−1 to λ+
µ , the latter of

which apparently had a somewhat higher beam rate. The λ+
µ measurement used a sulfer

target to depolarize the µ+, which otherwise could have exhibited distortions in its decay

time spectrum due to a combination of spin precession and detector asymmetries.

The reported results, in terms of lifetimes τµ, are τ−µ = 2194.903 ± 0.066 ns and τ+
µ =

2197.182 ± 0.121 ns. The capture rate is then Λexpt
c = 467 ± 29 s−1, in which a relativistic

correction to the µ− decay rate is included (+12 s−1 [7], due to the µ− orbital motion) as well

as the correction for deuterium (−18±4 s−1). The authors also report Λc based on the world

average µ+ lifetime updated with τ+
µ from their experiment. The present world average for

this value, some 25 years later, is much more precise: τ+
µ = 2197.019 ± 0.021 ns [8]. The

resulting capture rate in the Saclay experiment is then

Λexpt
c = 433± 15 s−1. (1.8)

The interpretation of Λc in terms of ΛS is dependent on the rate λop of the ortho-

para transition of the pµp molecule. This fact was forseen, and a followup experiment was

designed to constrain λop. The result was λEx1
op = (4.1± 1.4)× 104 s−1 [9], somewhat lower

than the theoretical prediction of λTh
op = (7.1± 1.2)× 104 s−1 [10]. The situation was further

aggravated by a more recent measurement yielding the result λEx2
op = 11.7± 1.7+0.9

−0.6 s−1 [11],

which is inconsistent with both theory and the previous measurement.

1.2.4 Radiative Muon Capture in Liquid Hydrogen

Radiative muon capture (RMC) on the proton,

µ+ p→ νµ + n+ γ, (1.9)
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(a) The RMC pair spectrometer at TRIUMF. (b) X-Y view of converted photon event.

Figure 1.5: (both from Ref. [14]) Diagrams of the apparatus used to measure photons from
radiative muon capture (RMC) in liquid hydrogen.

is ∼ 10−8 times as likely as muon decay for photon energies Eγ > 60 MeV. Above this energy

the photon spectrum is sensitive to the pseudoscalar coupling gp; therefore this process is

another way to experimentally determine gp, though the theoretical treatment is not as

straightforward as in ordinary muon capture on the proton (see e.g. [12]).

A first measurement of the rare process of RMC on the proton was reported by G.

Jonkmans et al. in 1996 [13] and described in more detail by Wright et al. [14]. Muons were

stopped in liquid hydrogen contained within an apparatus designed to detect the energy and

time spectra of photons produced in the target. The same requirements of high purity and

low deuterium concentration apply as in the ordinary muon capture experiments. Similar

to the Bardin et al. ordinary muon capture measurement, target walls were made of high-Z

materials, and timing cuts were applied to remove photons from RMC captures on high-Z

nuclei from the data. Likewise the enormous background of photons produced in nuclear

capture of negative pions (a beam contaminant) was eliminated by cutting events prompt

with particle entrances. Photons were detected after their conversion in lead to e+e− pairs:

a spectrometer tracked these charged particles in an applied magnetic field, such that the

photon energy could be inferred by the curvatures of the tracks (Fig. 1.5). Some of the

copious bremsstrahlung photons, produced by electrons from muon decay with a maximum

energy of mµ/2 ≈ 53 MeV, “leaked” into the energy spectrum above 60 MeV due to res-

olution effects (Fig. 1.6a); as Wright et al. explain, this was the largest background after

all analysis cuts, and it was subtracted based on the photon spectrum observed when µ+

(which do not capture) were stopped in the target.

Comparison of the experimental RMC photon spectrum required knowledge of the de-

10



Figure 1.6: Results from the radiative muon capture experiment (both from Ref. [14]). (a)
“Photon energy spectrum after all cuts and before background subtraction (unshaded) and
bremsstrahlung background spectrum (shaded).” (b) “Photon energy spectrum after all cuts
and background subtraction. Theoretical RMC spectra are shown for the best fit value of
gp/ga = 9.8 (solid curve) and for gp/ga = 6.6 (dashed curve).”

tector response. Monte Carlo code was developed for this purpose and validated by stopping

π− in the target: the π− stopping distribution and the known photon spectrum from π−

stopped in hydrogen were input into the computation, and the Monte Carlo results were

shown to reproduce the observed spectrum. The theoretical RMC photon spectrum was

calculated assuming certain values for gp and λop, and photons were generated in the vir-

tual spectrometer with the Monte Carlo code drawing from the theoretical spectrum. These

virtual data were analyzed with the same code as the real data, thus producing an RMC

spectrum to compare with real data. The process was repeated for several different gp until a

best fit gp for a given λop was obtained (Fig. 1.6b, in which λop = 4.1× 104 s−1). The result

for gp, over a wide range of λop values, lies significantly above the theoretical prediction.

This discrepancy has not yet been explained [12].

1.3 Overview of the MuCap Experiment

The goal of the MuCap experiment is to measure the rate of ordinary muon capture in

hydrogen gas to 1% precision, determining gp to 6% precision and without ambiguities due

to λop. Innovative features of previous efforts are drawn upon to achieve this objective. As in

the Alberigi-Quaranta et al. experiment [3], the target is hydrogen gas to minimize molecular

formation, and a detector operating on the hydrogen gas itself defines a fiducial volume for

muon stops well-away from the walls. The lifetime technique based on electron detection
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is employed, as in the Bardin et al. experiment [5], to avoid the uncertainties in absolute

calibration of neutron detectors that would otherwise limit the measurement precision.

An essential, new technology of the MuCap experiment is the time projection chamber

(TPC) operating with hydrogen gas. An active fiducial volume is defined by the TPC in

which muons are tracked in 3-dimensions to their stop positions, without any Z > 1 material

within the fiducial volume or on its surface. In a sense, the new TPC allows the logic to

be inverted compared to the Alberigi-Quaranta et al. experiment: the previous experiment

rejected an event if a muon stop was detected near the walls, while the present effort accepts

an event only if a muon stop is positively detected away from the walls. Wires on the surface

of the fiducial volume, unavoidable in the earlier experiment, are absent with the TPC. The

TPC is also able to detect the recoil products of muon captures on Z > 1 impurities,

providing in situ Z > 1 impurity monitoring of the hydrogen gas. Another innovation in

this respect is a purification system that continuously cleans the hydrogen gas, maintaining

a very low level of impurities over several weeks of data accumulation.

The MuCap goal of ΛS to 1% precision requires a measurement of the muon (inverse)

lifetime to 10−5 λ−µ , a technical challenge in itself. Electron detector acceptances, efficiencies,

and background counts must be constant at this level. Many cross-checks were designed

into the experiment to demonstrate accuracy of the result. A significant advantage over

previous ordinary muon capture experiments is the ability to continuously record data from

all detectors, independently of each another. In this way, offline data analyses can explore

different detector combinations and various cuts, each of which may be expected to be more

or less sensitive to certain systematic effects, to check for consistency in the final lifetime

result. An additional accuracy check may be accomplished by comparing the µ+ lifetime,

measured with the MuCap electron detector, to the world average µ+ lifetime from other

experiments.

The implications, in terms of the proton’s pseudoscalar coupling gP , of a 1% precision

measurement of the ordinary muon capture rate in the MuCap target is shown in Fig. 1.7

assuming different values of the ortho-para pµp molecular transition rate λop. Also shown

are the interpretations of the results from the TRIUMF radiative muon capture (RMC) and

the Bardin et al. ordinary muon capture (OMC) experiments, both of which used liquid

hydrogen. In the case of the OMC result, the dependence of gP on λop is severe. The

value of gP implied by the RMC result is significantly higher than theory predicts over

nearly the entire range of reasonable λop values. Furthermore, there is no region of mutual

agreement between the OMC and RMC experiments and theory. A successful measurement
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Figure 1.7: (from Ref. [15], MuCap band modified) Experimental and theoretical determi-
nations of gP , presented vs. the ortho–para transition rate λop of the pµp molecule. The
most precise previous OMC experiment [5] and the RMC experiment [14] both depend sig-
nificantly on the value of λop, which itself is poorly known due to mutually inconsistent
experimental (λEx1

op [9], λEx2
op [11]) and theoretical (λTh

op [10]) results. A measurement of the
OMC rate by MuCap will give a value for gP that is nearly independent of molecular ef-
fects; here the uncertainty band corresponding to the precision goal of 1% in ΛS is placed
arbitrarily at the height of the theory prediction.

of OMC in MuCap to the design precision goal will provide an unambiguous, experimental

determination of gP that can be meaningfully compared to theory.
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Chapter 2

Muon Capture Theory

2.1 Standard Model Formulation

As the momentum transfer q appropriate for muon capture is much smaller than the W

boson mass mW , i.e., |q2| � m2
W , the W propagator reduces to a constant factor m−2

W which

scales the weak coupling constant. The process is then well-described by the four-fermion

interaction with Lorentz-invariant transition amplitude

M =
GFVud√

2
Jαjα, (2.1)

where J is the nucleon current (p → n), and j is the lepton current (µ→ νµ); here the bare

weak couplings are factored out of J and j to be included inGF , which also contains the factor

m−2
W from the W -boson propagator. With the factor Vud of the Cabibo-Kobayashi-Maskawa

(CKM) and including conventional factors of
√

2, GF is the same Fermi coupling constant

familiar from muon decay (µ− → νµ + e− + ν̄e) and other low-energy weak interactions. The

lepton current is

jα = iψ̄νγα(1− γ5)ψµ, (2.2)

which represents purely vector-minus-axial-vector (“V −A”) coupling of lepton states. The

weak current of an individual quark is similar to that of a lepton: the only modification

necessary is multiplication by the appropriate CKM matrix element (Vud, factored out in

Eq. 2.1) to account for the difference between the quark weak-interaction eigenstates and

the mass eigenstates.

If the nucleon were similarly pointlike, in the general expression

Jα = iψ̄n (V α − Aα)ψp, (2.3)

we would have V α = γα and Aα = γαγ5. Instead, to account for the QCD structure of

the nucleon, V α and Aα must be modified by form factors, gi(q
2), i = V,M, S,A, T, P ,
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Figure 2.1: Feynman diagrams representing ordinary muon capture. Left: quark level.
Right: nucleon level.

multiplying terms constructed from available Lorentz 4-vectors:

V α = gV (q2)γα + i
gM(q2)

2mN

σαβqβ + gS(q2)qα, (2.4)

and

Aα = gA(q2)γαγ5 + igT (q2)σαβqβγ5 +
gP (q2)

mµ

γ5q
α, (2.5)

where the form factors may take complex values. Scaling of the gM and gP terms by (2mN)−1

and m−1
µ , where mN and mµ are respectively the nucleon and muon mass, is by convention.

In the Feynman diagrams of Fig. 2.1, representing muon capture on the quark level and

nucleon level, the W -propagator has been retained for illustrative purposes.

A calculation of OMC at the quark level would require detailed knowledge of the low-

energy QCD wavefunctions of the proton and neutron, and such an approach remains beyond

modern capabilities. Instead, progess has been made with effective field theories (EFT’s),

which offer model-independent calculations of basic processes in terms of a few a priori

undetermined “low-energy constants (LEC’s).” Different physical processes are related by

the same LEC’s; thus, experimental data from other processes can be used to fix the LEC’s,

and quantitative predictions of muon capture can be made. Recent EFT calculations of

muon capture on the proton are quoted below, but first the phenomenological approach is

outlined, in which the nucleon is a basic particle and the various form factors are parameters

that must be determined externally.
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2.2 Knowledge of Nucleon Form Factors

Neglecting an overall complex phase in M, the nucleon form factors amount to eleven

parameters which must be known to calculate the rate of muon capture. Since the deviations

of the form factors from their values in the absence of QCD (i.e., gV = gA = 1 and all

others zero) are attributed to strong interaction effects, processes that are related by QCD-

symmetric transformations ofM are expected to have the same form factor values for a given

q2. Thus, QCD symmetries and approximate symmetries restrict the couplings in muon

capture and relate them to processes measured in other experiments, in particular electron

scattering off the proton and neutron, neutron β-decay, and antineutrino-neutron scattering.

The important symmetry operations and their implications on the form factors are outlined

below, followed by a summary of numerical values appropriate for the momentum transfer

of OMC on the proton.

2.2.1 Time Reversal Invariance

The number of free parameters in equations 2.4 and 2.5 can immediately be reduced by

requiring time reversal invariance of the observables, which are proportional to |M|2. As a

consequence of this symmetry, all form factors must be relatively real [16].

2.2.2 Conserved Vector Current (CVC)

The CVC hypothesis stems from the invariance of the strong interaction under isospin ro-

tation. That is, neglecting the small mass difference between the proton and neutron, the

strong interaction is the same for a proton, a neutron, and arbitrary mixed proton-neutron

states. Isospin rotations turn protons into neutrons and vice versa. As explained in the

text by Commins and Bucksbaum [16, pages 165–167], CVC states that the vector part of

the isospin lowering current V α (p → n), its hermitian conjugate V α† (n → p), and the

isovector portion of the electromagnetic current J isov
EM (N → N) form an isospin triplet of

conserved currents. The electromagnetic current between two proton states |p, s〉 and |p′, s′〉
is written [16, Eq. 4.119]

〈p′, s′|JEM|p, s〉 = ei(p′−p)·xū(p′, s′)[Cp(q
2)γα + iMp(q

2)σανqµ + F3p(q
2)q2]u(p, s) (2.6)

and similarly for the current between two neutron states (with the symbol “p” in the EM

form factors’ subscripts changed to “n”). The scalar term F3(q
2) is shown to be zero by the
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conserved-current requirement, ∂αJ
α
EM = 0. In terms of the isovector electromagnetic form

factors C(1)(q2) = Cp(q
2)−Cn(q2) and M (1)(q2) = Mp(q

2)−Mn(q2), applying CVC leads to

the result [16]

gV (q2) = C(1)(q2) = Cp(q
2)− Cn(q2), (2.7)

gM(q2)

2mN

= M (1)(q2) = Mp(q
2)−Mn(q2), (2.8)

gS(q2) = 0. (2.9)

2.2.3 G-parity

G-parity is the combined operation of charge conjugation and isospin rotation by π about

the I2 isospin axis, G = CeiπI2 . It is a symmetry of QCD, with violations allowed only on the

level of isospin breaking. Applying G to the transition amplitude M, it can be shown [16]

that 1) gS transforms differently than gV and gM ; and 2) gT transforms differently than gA

and gP . gS and gT are called “second class” currents and are expected to be negligible.

2.2.4 Partially Conserved Axial Current (PCAC)

The discussion of the partially conserved axial current (PCAC) hypothesis in the text by

Commins and Bucksbaum [16, pp. 169–172] is summarized in this subsection. Two minor

changes are made for consistency: g3 → gP/mµ, and the model reaction is OMC instead of

β-decay.

The axial current Aα is conserved in the limit of zero pion mass, limmπ→0 ∂αA
α = 0.

The dominant contribution to gP is represented by the Feynman diagram in Fig. 2.2. Other

processes contribute to gA [16]. The amplitude of the process involves the pion-nucleon

coupling gπNN , the pion propagator (q2 −m2
π)−1, and the pion decay constant fπ. Reading

off the terms in the diagram leads to the amplitude [16]

A = −VudGFfπgπNN
1

q2 −m2
π

ū(n)qαγ5u(p)jα, (2.10)

where u is the nucleon Dirac spinor. Comparing this with the pseudoscalar term in 〈n|Aα|p〉
gives [16]

gP (q2)

mµ

= −fπgπNN

√
2F (q2)

q2 −m2
π

, (2.11)

in which the “slowly varying” function F (q2) is introduced to account for vertex corrections
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Figure 2.2: Feynman diagram representing one-pion exchange in muon capture. This is the
dominant constribution to gP at the momentum transfer q2

OMC.

away from q2 = m2
π, where gπNN is measured. Now substitute Eq. 2.11 into the axial part

of the nucleon current:

〈n|Aα(x)|p〉 = ei(pn−pp)·xū(n)

[
gA(q2)γα − fπgπNN

√
2F (q2)

q2 −m2
π

qα

]
γ5u(p). (2.12)

The partially conserved axial current hypothesis (PCAC) states that limmπ→0 ∂αA
α(x) = 0,

i.e., CAC in the limit of zero pion mass. Applying PCAC to Eq. 2.12, we have

0 = lim
mπ→0

ū(n)

[
gA(q2)(mp +mn)− fπgπNN

√
2F (q2)

q2 −m2
π

q2

]
γ5u(p), (2.13)

where the Dirac equation (∂αγ
α − m)ψ(x) = 0 has been used in the gA term. Thus from

result (Eq. 2.13) of PCAC applied to the expression (Eq. 2.12) for the axial current in which

gP is replaced with the one-pion exchange term from Fig. 2.2, and assuming F (q2) (for vertex

corrections to gπNN) is slowly varying F (q2) ≈ 1, we obtain the Goldberger-Treiman relation

gA(0) ≈ fπgπNN

√
2

mp +mn

. (2.14)

Equations 2.11 and 2.14 can be combined to express gP (q2) in terms of gA(0):

gP (q2)

mµ

≈ −2mNgA(0)

q2 −m2
π

, (2.15)

in which mN = (mp +mn)/2 ≈ mp.
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2.2.5 Further Information on gP

Modern calculations of gP use the framework of chiral perturbation theory (ChPT). The

PCAC result is reproduced, and further corrections are systematically calculated in terms of

small parameters (e.g., mµ/mN ∼ 0.1). Calculation to next-to-leading-order (NLO) [17]

shows the correction term to Eq. 2.15 originally derived through current-algebra tech-

niques [18]:

gP (q2) ≈ −2mµmNgA(0)

q2 −m2
π

− 1

3
gA(0)mµmNr

2
A, (2.16)

where rA is the axial radius (defined below). Higher-order (NNLO) corrections have been

shown to be small [19]. We will use the value for gP quoted in the review by Bernard et

al. [20],

gP (−0.88m2
µ) = (8.74± 0.23)− (0.48± 0.02) = 8.26± 0.16, (2.17)

in which the contributions from the PCAC and NLO terms are separated in the middle

expression; the authors use the PCAC expression in terms of gπNN and fπ instead of gA(0)

(related via Eq. 2.14), and the values gπNN = 13.10± 0.35 and fπ = 92.4± 0.3 MeV.

2.2.6 Summary of Form Factor Values

We now assign numerical values to the weak form factors. At q2 = 0, the electromagnetic

form factor Cp = 1 (Cn = 0), and aside from a factor of the electron charge e, Mp (Mn) is the

anomalous magnetic moment of the proton (neutron), κp−1 (κn−0). The proton and neutron

magnetic moments are κp = (2.792847351 ± 0.000000028)µN and κn = (−1.91304273 ±
0.00000045)µN [21], respectively, where µN = eh̄/2mp is the nuclear magneton. Then the

weak vector form factor is gV (0) = 1, and the weak magnetic form factor is gM(0) =

(κp − 1 − κn)/µN . The q2-dependences of gV and gM are determined by electromagnetic

electron-proton and electron-neutron scattering experiments. For sufficiently low energies,

the dependence of an electromagnetic form factor F is parameterized by

F (q2) = F (0)

(
1 +

q2

6
〈r2〉

)
, (2.18)

where 〈r2〉, called the “charge radius” of the form factor, is from fits to scattering data.

A global fit to electromagnetic scattering data finds the radii rv
1 = 0.765 fm for C(1) and

rv
2 = 0.893 fm for M (1) [22], each reported with an uncertainty of 1%. Equation 2.18 is

applied directly to gV and gM with these radii.
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Value at Value at
q2 = 0 q2 = −0.88m2

µ Comment
gV 1 0.9755± 0.0005 Electron scattering and CVC
gM 3.70589008± 0.00000045 3.5821± 0.0025 Electron scattering and CVC
gA 1.2695± 0.0029 1.24689± 0.0036 Neutron β-decay asymmetry
gP 8.26± 0.16 PCAC with NLO term from ChPT
Vud 0.97377± 0.00027 0.97377± 0.00027 Superallowed (0+ → 0+) nuclear β-decay

Table 2.1: Summary of parameters relevant to the calculation of the muon capture rates ΛS

and ΛT .

The weak axial form factor gA(0) is set from the current world average of measurements

of the neutron β-decay asymmetry parameter, λ ≡ −gA(0)/gV (0) = −1.2695 ± 0.0029 [21].

The gA(0) from beta decay is evolved to larger momentum transfers by applying Eq. 2.18,

with an axial charge radius rA — determined from fits to (anti) neutrino scattering data —

of 〈r2
A〉 = 0.42± 0.04 fm2 [23].

Besides well-known fundamental constants such as the Fermi constant GF and particle

masses, the remaining parameter required for quantitative predictions of OMC on the proton

is the CKM matrix element Vud. Recent improvements in the calculation of electroweak

radiative corrections to superallowed nuclear beta decays (0+ → 0+ transitions) allows a

precise value of Vud to be extracted: Vud = 0.97377(27) [24].

2.3 Phenomenological Calculation

The treatment of ordinary muon capture in this section follows that in the texts by Com-

mins [25] and (with fewer details) Commins and Bucksbaum [16]. It is a non-relativistic ex-

pansion of the Lagrangian to first order in the nucleon recoil velocity vnucleon/c. The coupling

constants gi in what follows are the form factors gi(q
2) evaluated at the momentum-transfer

q2
OMC appropriate for OMC, i.e., gi ≡ gi(q

2
OMC). The sign conventions of these couplings vary

in the literature; they are defined above in Eqs. 2.3–2.5 such that gV , gM , gA, and gP are

positive.

2.3.1 Wavefunctions

The wavefunction of each particle is a solution to the Dirac equation,

(∂αγ
α −m)ψ(x) = 0, (2.19)
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where m is the mass of the particle. The nucleon may be considered as well-localized both

before and after the capture reaction. In terms of Pauli matrices ~σ ≡ (σ1, σ2, σ3) and bi-

spinors χ, we have the following for the proton wavefunction:

ψp(x) = e−iEptψp(~x) = e−iEpt

 χp(~x)
~σA·~pp

2mN
χp(~x)

 ; (2.20)

the subscript p labels the proton, mN is the mass of the nucleon, which will be taken as the

average of the p and n mass, and the subscript A on the Pauli matrices vector is to remind

us that these matrices operate on the nucleon spinors. The neutron wavefunction ψn(x) is

given by the same expression with the subscript p replaced by n to indicate the neutron.

The outgoing neutrino may be written as a plane wave (mν ≈ 0):

ψν(x) = e−iEνtψν(~x) =
1√
2
e−iEνtei~pν ·~x

 χν

~σ · ~pνχν

 , (2.21)

where σ with no subscript reminds us that the matrix acts on the lepton spinor.

The muon is in a bound state with the much heavier proton, and its wavefunction is

similar to that of the electron in the hydrogen atom:

ψµ(x) = e−iEµtψµ(~x) = e−iEµtφµ(~x)

 χµ

0

 , (2.22)

φµ(~x) =
1√
πa3

0

e−r/a0 , (2.23)

where r = |~x| and the Bohr radius, in terms of the reduced mass m′ = mµmp/(mµ +mp) of

the proton-muon system and the fine-structure constant α, is a0 = 1/(m′α).

2.3.2 Kinematics

The total 4-momentum pi of the initial state is the sum of the muon and proton rest mass,

plus the muon-atomic binding energy −α2m′/2; the final state 4-momentum pf is the sum

of neutrino and neutron 4-momenta. The 4-momenta of the particles are the following:

pp =

 mp

~0

 , pµ =

 mµ − α2m′/2

~0

 , (2.24)
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pn =

 √
m2

n + |~pn|2

~pn

 pν =

 Eν

Eν p̂ν

 . (2.25)

In the spatial components of the neutrino 4-momentum vector, a unit vector p̂ν in the

direction of ~pν is introduced. Conservation of 3-momentum requires ~pn = −Eν p̂ν , and we

are left with the energy conservation equation and its solution for Eν :

√
s ≡ mp +mµ − α2m′/2 =

√
m2

n + E2
ν + Eν ⇒ Eν = s−m2

n

2
√

s
. (2.26)

The momentum transfer squared of the reaction is q2
OMC ≡ (pn− pp)

2 = −0.876m2
µ, which is

expressed in terms of the muon rest mass.

2.3.3 Transition Rate

The differential transition probability per unit time is [25]

dW =
2πδ(Ep − En + Eν −mµ)d3~pν

(2π)3
|A|2, (2.27)

where the transition amplitude is

A =
1√
2
GFVud

∫
d3~xψ̄n(~x)Ôψp(~x), (2.28)

with

Ô = gV γ
αjα + i

gM

2mN

σαβqβjα − gAγ
αγ5jα −

gP

mµ

γ5q
αjα, (2.29)

and lepton current

jα(~x) = ψ̄ν(~x)γα(1− γ5)ψµ(~x). (2.30)

Substituting in the expressions for the muon and electron wavefunctions and using the Dirac

representation of the gamma matrices gives the following “two-component” reduction of the

lepton current:

j0 =
1√
2
χ†ν(1− ~σ · p̂ν)χµe

−i~pν ·~xφµ(~x) (2.31)

~j =
−1√

2
χ†ν(1− ~σ · p̂ν)~σχµe

−i~pν ·~xφµ(~x) (2.32)

Similar two-component reduction of the nucleon wavefunctions leads, after some algebra and

dropping terms of second order in the nucleon recoil ((vnucleon/c)
2 ∼ (mµ/mN)2 ≈ 1%), to
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an expression for the amplitude A in terms of 2-spinors and Pauli matrices [25]

A =
1

2

∫
d3~xe−i~pν ·~xφµ(~x)χ†nχ

†
νHeffχµχp, (2.33)

Heff = (1− ~σ · p̂ν)(GV +GA~σA · ~σ +GP~σA · p̂ν), (2.34)

The parameters in the effective Hamiltonian are defined in terms of the original couplings

as follows:

GV = GFVudgV

(
1 +

Eν

2mN

)
, (2.35)

GA = GFVud

(
gA +

Eν

2mN

(gM + gV )
)
, (2.36)

GP = GFVud
Eν

2mN

(
−Eν

mµ

gP + gV − (gV + gM)

)
. (2.37)

The spatial integral in equation 2.33 is simplified by noting that the neutrino wavefunc-

tion does not vary much over the extent of the nucleon: the plane-wave term in the integrand

may be replaced by 1. The nucleon is considered as small and well-localized at the origin,

so the muon orbital function is replaced with its value at ~x = 0. Some authors [26] include

an overlap factor Cp ≈ 1 to account for the nonzero extent of the nucleon. Thus we have

the simplified expression for A:

A =
1

2
Cpφµ(0)χ†nχ

†
νHeffχµχp. (2.38)

The quantity of interest in the transition rate is the amplitude squared,

A†A =
1

4
C2

pφ
2
µ(0)χ†µχ

†
pH

†
effHeffχµχp, (2.39)

where we have used the completeness of the sum over final spins, Σχχ† = 1.

The total transition rate is the integral of equation 2.27 over the neutrino phase space.

Using d3~pν = E2
νdEνdΩν , where dΩν is the solid-angle element of neutrino direction p̂ν , and

doing the integral over Eν leads to

W =
1

4π

E2
ν

1 + Eν/
√
m2

n + E2
ν

C2
pφ

2
µ(0)

∫ dΩν

4π
χ†µχ

†
pH

†
effHeffχµχp, (2.40)

Integration over the neutrino direction, with the aid of several Pauli matrix identities, gives
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finally an explicit expression for the total transition rate [25]:

W =
C2

p

2π2a3
0

E2
ν

1 + Eν/
√
m2

n + E2
ν

G2
V (1 + 3η)

(
1− 〈~σ · ~σA〉ξ

1 + 3η

)
, (2.41)

where

η =
1

G2
V

(
G2

A +
1

3
(G2

P − 2GAGP )
)
, (2.42)

ξ = 2
1

G2
V

(
G2

A +
1

3
GVGP −GVGA −

2

3
GAGP

)
, (2.43)

and the neutrino energy Eν was given earlier in equation 2.26. The term in angle brackets

represents the expectation value in the initial µp state, which is 〈~σ · ~σA〉F=0 = −3 in the

singlet state, or 〈~σ · ~σA〉F=1 = 1 in the triplet state. Putting in values for all physical

constants and form factors, including an overlap factor of Cp = 0.9956 [26], and dividing by

h̄ to get the rate in inverse seconds, we have the singlet and triplet capture rates

WF=0 = 689.5 s−1, WF=1 = 11.3 s−1. (2.44)

2.4 Chiral Perturbation Theory Calculations

The modern way to calculate the muon capture rate employs chiral perturbation theory

(ChPT). Chiral perturbation theory is an effective field theory of low-energy QCD, in which a

series expansion about a chirally-symmetric lagrangian, which obtains in the limitmu+md →
0, is developed. The expansion is in terms of the small parameter q/Λχ, where q is the

momentum transfer scale and Λχ ∼ 1 GeV is the chiral scale. The calculations are in terms

of a number of free parameters called “low-energy contants.” Chiral perturbation theory is

considered model independent in that it expresses the underlying symmetries of QCD and

fixes the low-energy constants by comparing calculations to data.

Two published calculations using ChPT to find the rate for ordinary muon capture on

the proton give slightly different results. The first, by Ando, Myhrer, and Kubodera [27], is

a next-to-next-to-leading-order (NNLO) calculation which finds ΛS = 695 s−1. A separate

calculation by Bernard, Hemmert, and Meissner [28] included additional degrees of freedom

for the nucleon ∆ excitation. No significant difference in the chiral expansion was found,

and the reported result for the capture rate is ΛS = 687.4 s−1. Bernard et al. state that they
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“further demonstrate that both ordinary and radiative muon capture consitute systems with

a very well-behaved chiral expansion, both in the standard chiral perturbation theory and in

the small scale expansion” [28]. The numerical difference of ∼1% between the two ΛS results,

which in principle come from the same type of calculation, is not clear. Differences could

arise trivially, for example from expanding the phase-space factor to order (mµ/mN)2 ∼ 1%

or from slightly different empirical input values for gπNN or gA. For comparison with the

MuCap experimental result, the two ΛS predictions are averaged to ΛTh
S = 691.2 s−1.

2.5 Radiative Corrections

The theoretical prediction for ΛS is modified by radiative corrections. Historically, some

radiative corrections were automatically included in the calculations of ΛS, because the

product GFVud was taken directly from β-decay measurements. More recent calculations,

including ones quoted above, use for Vud the value extracted from nuclear beta decay with

radiative corrections taken into account; that is, electroweak radiative corrections common to

both ordinary muon capture and beta decay were explicitly removed from the normalization

factor. An additional correction specific to ordinary muon capture was calculated in 1972

by Goldman [29], who found a 0.6% increase in ΛS due to vacuum polarization.

Very recently a more complete calculation of the radiative corrections for ordinary muon

capture on the proton was done by Czarnecki, Marciano, and Sirlin [30]. They found a

+2.4% correction for electroweak effects like the ones appearing in neutron beta decay.

The additional vacuum polarization effect was found to be +0.4%, somewhat smaller than

Goldman’s result. The total correction to ΛS is +2.8%, a significant amount compared to

the present and expected precision of the MuCap result. The chiral perturbation theory

prediction will be increased by this amount for comparison with experiment.

2.6 Sensitivity of ΛS to External Parameters

Uncertainties in the form factor values translate into uncertainties in the theoretical pre-

diction for ΛS. The sensitivity factor of a parameter C is defined as K(C) ≡ ∂ΛS

∂C
C
ΛS

. It is

straightforward to compute this from the phenomenological calculation results (Eqs. 2.41–

2.43), though we opt to simply use the (nearly identical) values for K(C) from Govaerts and

Martinez [26]. Values of K(C) and C(q2
OMC) are in Table 2.2, along with their contributions

to the uncertainty of the ΛS prediction. The derivatives ∂ΛS/∂C can be easily calculated
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Value at
C q2 = −0.88m2

µ
∂ΛS
∂C

C
ΛS

δΛS
ΛS

gV 0.9755± 0.0005 +0.466 0.024%
gM 3.5821± 0.0025 +0.151 0.011%
gA 1.24689± 0.0036 +1.567 0.45%
gP 8.26± 0.16 −0.184 0.36%
Vud 0.97399± 0.00027 2 0.055%

Table 2.2: Effect on ΛS of the uncertainties in the phenomenological parameters C. All
sensitivity factors K(C) ≡ ∂ΛS

∂C
C
ΛS

are directly from Govaerts and Martinez [26] except the

last (Vud), which is trivially calculated from ΛS ∝ V 2
ud. The effect of uncertainty a form

factor C is calculated with δΛS

ΛS
= K(C) δC

C
. The form factor values are transferred from

Table 2.1.

from K(C):
∂ΛS

∂C
=

(
∂ΛS

∂C

C

ΛS

)
ΛS

C
≡ K(C)

ΛS

C
. (2.45)

Applying Eq. 2.45 to find ∂ΛS/∂gP from K(gP ), we use ΛS = 688.4 s−1 and gP = 8.475,

since these are the values used to calculate K(gP ) in Ref. [26] (they used the larger value of

gπNN = 13.37 to get gP ): this gives ∂ΛS/∂gP = −14.9 s−1. Including the radiative correction

factor 1.028, the derivative and its inverse become

∂ΛS/∂gP = −15.4 s−1, (2.46)

∂gP/∂ΛS = −0.065 s. (2.47)

The latter quantity will be used in the Results chapter to compute the change in gP , from

its theoretical value, implied by the experimental result for ΛS.

2.7 Other Capture Rates

Ordinary muon capture rates from other muonic states relevant to later discussions are

presented in this section.

Muon capture from a pµpmolecule depends on the configuration: ortho molecular (proton

spins aligned) or para molecular (proton spins opposite). The capture rates ΛOM (ortho) and

ΛPM (para) can be written in terms of the singlet and triplet µp capture rates and molecular

overlap factors γO, γP [31]:

ΛOM = 2γO(
3

4
ΛS +

1

4
ΛT ), (2.48)
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ΛPM = 2γP(
1

4
ΛS +

3

4
ΛT ). (2.49)

The overlap factors are calculated to be 2γO = 1.009± 0.001 and 2γP = 1.143± 0.001 [10].

Since ΛT � ΛS, the singlet capture rate dominates from either state, and ΛOM ≈ 3
4
ΛS,

ΛPM ≈ 1
4
ΛS.

The capture rate Λd from the µd atomic state is similar to ΛS. Theoretical predictions

give Λd ≈ 370–410 s−1, consistent with experiments.

The nuclear capture rate ΛZ of µZ atoms can be estimated based on overlap of the

muon orbital wavefunction and the nucleus. The overlap φ2
µ(0) ∝ Z3, where φµ is the orbital

wavefunction. Multiplying by the number of protons in the nucleus, we see that ΛZ ∼ Z4ΛS.

Nuclear structure causes significant deviations from this simple relation, but it is sufficient

in the present context to note that ΛZ � ΛS. Measurements of ΛZ covering a wide range of

nuclei are tabulated in Ref. [32].
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Chapter 3

Muon Kinetics in Hydrogen

The interpretation of experiments to measure muon capture on the proton requires knowledge

of the initial muon-proton state at the moment of capture. Real experiments involve bringing

negative muons to rest inside a medium, in this case hydrogen, where bound states form

between the muons and protons. During the relatively long muon lifetime, the µp atom

undergoes several transitions, many involving interactions with H2 molecules or impurities

(isotopic or elemental) of the medium. Mu-atomic and molecular transition rates in hydrogen

effected by collisional processes are conventionally defined at the density of liquid hydrogen,

NLH2 = 4.25 × 1022 atoms/cm3. Density relative to liquid hydrogen is represented by the

symbol φ. We will see that a target density of φ ≈ 0.01 is optimal for most captures to take

place from the µp singlet atomic state, and the hydrogen target must be deuterium-depleted

and free of Z > 1 contaminants.

3.1 Stopping of Energetic Muons

Charged particles traveling through material deposit increasing amounts of energy per path

length as they are slowed, leaving the largest amount of energy at the end of the path. The

peak of ionization energy near the stop point is called the Bragg peak. An analytic relation

between the range R versus kinetic energy T of an incident particle can be found by fits to

empirical data. The range-energy relation thus found is [33]

T =
(
R

k

)1/1.8

, (3.1)

where the constant k appropriate for the MuCap target is k = 57.89 with R in mm and T in

MeV. Equation 3.1 may be differentiated by R to get the ionization energy per unit length,
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dE/dx, at a distance R from the stop position:

dE

dx
=

1

1.8k(R/k)1−1/1.8
. (3.2)

3.2 Atomic Capture and Transitions

After being stopped in hydrogen, a negative muon undergoes a series of atomic-scale pro-

cesses until it disappears through decay or nuclear capture.

1. Atomic Formation. A muonic hydrogen (µp) atom is initially formed with the muon’s

orbital radius similar to that of the electron it replaced. The initial atomic state energy

level is correspondingly n ≈
√
mµ/me ≈ 14 [1]. The muon then cascades to the mu-

atomic ground state at a rate enhanced by collisions with the medium. The µp atom

quickly (within ∼ 10−10 s at density φ = 0.01) de-excites to the n = 4 state via two

mechanisms [34]: dissociation of H2 (pµ∗∗ + H2 → pµ∗ + H + H), and an “external”

Auger effect on the electron of another atom. The final transition from n = 4 to the

ground state, by radiative transitions, occurs in less than ∼ 10−9 ns [35]. The ground-

state (n = 1) muonic atom is formed in either the singlet (total spin F = 0) or triplet

(F = 1) hyperfine state with statistical probability, i.e., the probabilities to form the

singlet and triplet state are P (F = 0) = 1/4 and P (F = 1) = 3/4.

2. Atomic Hyperfine Transition. The hyperfine splitting between the single and triplet

states is ∆Ehf = 0.195 eV, much greater than the room-temperature thermal energy

scale kT ≈ 0.025 eV. Irreversible triplet-to-singlet transitions take place via the col-

lisional charge-exchange process, (µp)↑↑ + p → (µp)↑↓ + p, at the density-dependent

rate φλhf , after the µp atom has thermalized. For a hydrogen density of φ ≥ 0.01, the

triplet µp transitions to the singlet state well-within 100 ns [36].

3. Molecular Formation, Transfer to Z > 1 Impurity, or Transfer to Deuteron. The µ−

binds more tightly to all other nuclei than to the proton. This fact, combined with

the ability of the µp — a small, neutral object — to penetrate within the charge cloud

of an atom and interact directly with the nucleus, leads to high transfer rates away

from the muonic hydrogen state. Since these are collisional processes, the rates scale

by the density of the impurity nuclei, cXφ, where cX is the relative concentration of

the impurity and the subscript X labels the species.
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Figure 3.1: Simplified kinetics diagram for a negative muon in hydrogen of density φ relative
to LH2. Muon decay can occur from every state, and nuclear muon capture can occur from
each of the bound states.

λof (106 s−1) Ref. Comment
1.8 [37] Theory
1.89± 0.20 [38] Expt., Liquid H2

2.55± 0.18 [39] Expt., Liquid H2

2.34± 0.17 [40] Expt., Gaseous H2

3.21± 0.18 [41] Expt., Solid H2

Table 3.1: Determinations of the ppµ ortho molecular formation rate, normalized to liquid
hydrogen density (φ = 1).

The various muonic states, and transitions between them, are diagrammed in Fig. 3.1. The

processes of the last step outlined above — transitions away from the singlet µp state — are

represented in the right half of the figure and further described below.

3.2.1 Molecular Formation and Transitions

The mu-molecular ppµ formation rates into the ortho (angular momentum J = 1) and the

lower-energy para (J = 0) states occur with very different rates. The dominant formation

mechanism is S-wave scattering of pµ+ p with an E1 dipole transition coupled to an orbital

electron, resulting in an ortho ppµ molecule (the electron is ejected) [34]. A theoretical

calculation [37] predicts the density-dependent formation rates λof = 1.8× 106 s−1 for ortho

and λpf = 0.0074× 106 s−1 for para, each normalized to φ = 1. Experimental measurements

of λof vary somewhat more than their stated uncertainties (see Table 3.1).

While direct formation into the para molecular state can be ignored, transitions from

the ortho to para state are significant. As explained by Bakalov et al. [10], the ortho-para
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λop (104 s−1) Ref. Comment
7.1± 1.2 [10] Theory
4.1± 1.4 [9] Expt., Liquid H2

11.7± 1.7+0.9
−0.6 [11] Expt., Liquid H2

Table 3.2: Determinations of the ortho-para transition rate of the ppµ molecule.

transition is forbidden in the nonrelativistic limit, since it involves a change of total nuclear

spin from I = 1 to I = 0. The ∆I = 1 transition is only allowed through coupling to the small

component of the relativistic wave functions. The mechanism involves molecular complexes

[(ppµ)+p2e] + H2], [(ppµ)+2p2e]+ + H], etc., which form very quickly (rates ∼ 1013 s−1

in liquid hydrogen) [10], much faster than the subsequent ortho-para transition even at

lower densities φ ∼ 0.01. Thus the rate λop for the ortho-para transition, calculated to be

λop = (7.1± 1.2)× 104 s−1 [10] in liquid hydrogen, is also appropriate for MuCap conditions

of φ = 0.01 without scaling by φ. Two experimental studies of λop report values that

are inconsistent with each other and with the theoretical prediction (see Table 3.2); this is

precisely the cause of the ambiguity in the interpretation of muon capture experiments in

liquid hydrogen, in which capture takes place from the molecular state.

3.2.2 Transfer to Z > 1 Impurity

The binding energy EB(Z) of the ground state of a µZ atom approximately follows EB(Z) ∝
Z2. All Z > 1 atoms are more strongly bound than the µp, and the transfer rate λpZ of the

muon from µp to µZ is fast, λpZ ∼ 1011 s−1. Once the µZ is formed, cascade to the ground

state via Auger and radiative transitions is immediate, and nuclear capture proceeds with

rate ΛZ � ΛS. The transfer rate λpZ scales with the impurity density cZφ, for an effective

transfer rate λ̃pZ = cZφλpZ . Specific calculations of the effect of Z > 1 impurities on the µ−

lifetime in hydrogen are presented later in this chapter.

3.2.3 Transfer to the Deuteron

Due to the difference in reduced mass, the µd is more tightly bound than the µp by ∆Epd =

135 eV [34], and irreversible transfer of the muon to the heavier isotope, pµ + d → dµ + p,

takes place with rate cdφλpd, where cd is the deuterium concentration and λpd ∼ 1010 s−1.

The newly-formed µd has an initial kinetic energy of ≈ 45 eV [34], which, combined with an

anomalously small µd+ p→ µd+ p scattering cross section, can lead to large displacements
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on the time scale of the muon lifetime (see Section 3.5). The muon of a µd can also transfer

to a Z > 1 impurity as in the case of µp. In general the transfer rate λdZ 6= λpZ due to atomic

and molecular effects. For deuterium-depleted, low density, and high-purity hydrogen gas,

the transfer from µd to Z is entirely negligible.

3.3 Kinetics Equations

The kinetics processes diagrammed in Fig. 3.1 may be expressed as a system of linear differ-

ential equations. In addition to the transitions shown in the diagram, muon decay from each

state and nuclear muon capture from the bound states must be included. Let ni(t) represent

the number of muons in atomic/molecular state i at time t: i = 1 for singlet µp atoms,

i = 2 for ortho pµp molecules, i = 3 for para pµp, and i = 4 for µZ impurity atoms; triplet

µp atoms are not considered, since they quickly transition to the singlet state. Transfer to

deuterium is neglected for now, but it can be easily included for special studies involving

significant deuterium concentrations. The muon decay rate from any state is set to a com-

mon value λ0 ≈ λ+
µ , a good approximation except in µZ states with heavy nuclei, which

have significant bound-state effects on muon decay [7]. The following system of equations

express the change in the populations:

dn1

dt
= −(λ0 + ΛS + φλpp + λ̃pZ)n1 (3.3)

dn2

dt
= φλofn1 − (λ0 + Λom + λop)n2 (3.4)

dn3

dt
= φλpfn1 + λopn2 − (λ0 + Λpm)n3 (3.5)

dn4

dt
= λ̃pZ − (λ0 + ΛZ)n4 (3.6)

Lower-case lambdas are transition rates, and upper-case lambdas are nuclear capture rates.

The effective impurity transfer rate λ̃pZ and the total molecular formation rate λpp are

λ̃pZ = φλpZcZ , (3.7)

λpp = λof + λpf ≈ λof . (3.8)

The solution to the kinetics equations is given in appendix A.1 and plotted in Fig. 3.2 for

cZ = 0 and two different hydrogen densities.

Functional forms for the time spectra yX(t) of the various final state particles — electrons
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Figure 3.2: Relative populations of the singlet µp state (blue), the ortho pµp state (green),
and the para pµp state (red).

from muon decays, neutrons from captures on protons, and recoil nuclei from muon captures

on impurities — are calculated in terms of the solution to the kinetics equations. The

appearance-time spectrum of electrons is the total muon population in any state multiplied

by the decay rate λ0, i.e.,

ye(t) = λ0

∑
i

ni(t). (3.9)

In contrast, the different bound states are each weighted by the appropriate nuclear capture

rate to give the neutron time spectrum:

yn(t) = ΛSn1(t) + Λomn2(t) + Λpmn3(t). (3.10)

The time spectrum of Z > 1 capture events is

yZ(t) = ΛZn4(t). (3.11)

3.4 Effects of Z > 1 Impurities

The solution to the kinetics equations may be used to predict the effect of a small amount of

Z > 1 impurity on the muon disappearance rate. We are interested in the case appropriate

for the MuCap target: low density of φ ≈ 1% and low impurity concentration of up to

cZ ≈ 10−5 (for special impurity-doped runs — much less for production runs). Under these

conditions molecular formation and Z > 1 impurities amount to small corrections to the
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electron time spectrum approximated as a simple exponential decay,

ye(t) ≈ fe(t) = Nλe−λt, (3.12)

where N is the total number of decay electrons observed and, in terms of corrections for

molecular formation and Z > 1 impurities,

λ = λ0 + ∆λpµp + ∆λZ . (3.13)

The parameter λ in Eq. 3.12 can be found from the full kinetics solution ye(t) by taking the

first moment:

λ−1 = λ−1
1st ≡

∫∞
0 tye(t)dt∫∞
0 ye(t)dt

. (3.14)

The result depends on the parameters of ye(t): λ = λ1st(λ0,ΛS, λpZ , cZ , ...). The correction

∆λZ for a given impurity concentration cZ is then the difference of λ1st with cZ = 0 to the

same with cZ > 0:

∆λZ = λ1st(cZ = 0)− λ1st(cZ). (3.15)

The molecular formation correction may be calculated similarly by setting cZ = 0 and

comparing λ1st with λ0 + ΛS. A somewhat different approach is described in Appendix A.2

which connects more closely to the data-analysis reality of fitting an observed spectrum over

a finite time interval: a lifetime spectrum is generated with the full-kinetics function (Eq. 3.9)

and then fit via χ2-minimization with the single exponential function fe of Eq. 3.12. Similar

to the first-moment method, variation ∆λ of the fit result as the parameter-of-interest (e.g.,

cZ) of the full kinetics function is changed gives the effect of that parameter.

In the discussion of systematic corrections to the MuCap result in chapter 6, the correc-

tion ∆λZ is developed from essentially a zero-extrapolation procedure based on the observed

Z > 1 capture yield (i.e., the integral of yZ(t) in Eq. 3.11 mulitiplied by the detection ef-

ficiency ε) and calibration data in which the impurity concentration of the target gas was

increased. Calculation of ∆λZ from Eq. 3.15, which requires knowing the absolute impu-

rity concentration and species, and furthermore accurate literature values for the impurity

transfer and capture rates, is thus circumvented. However, theoretical predictions for certain

Z > 1 capture observables will be used for consistency checks and minor adjustments to the

impurity calibration method. The adjustments are necessary, as explained in section 6.5,

for two reasons: 1) we cannot be sure what were the relative fractions of different impuri-

ties in the production data, and 2) the calibration data were taken under slightly different
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conditions (detector gain). The quantities of interest are defined as follows:

βZ ≡ ∆λZ/YZ , (3.16)

γZ ≡ λ̃pZ/YZ , (3.17)

RZ ≡ ∆λZ/λ̃pZ . (3.18)

Theoretical predictions for βZ , γZ , and RZ require calculations of the capture yield YZ

(number of Z > 1 capture events per muon stop) and the lifetime effect ∆λZ . The total

capture yield is the integral of Eq. A.23:

YZ =
∫ ∞

0
yZ(t)dt =

ΛZ λ̃pZ

(λ0 + ΛZ)(λ0 + ΛS + φλpp + λ̃pZ)
, (3.19)

which approximately scales with the impurity concentration cZ if λ̃pZ � λ0 + ΛS + φλpp.

For the calculation of ∆λZ from Eq. 3.15 and the solution to the kinetics equations ye(t),

we may neglect capture from the µp state by setting ΛS = 0. Molecular formation should

be retained, however, because muons in the molecular pµp state are no longer available to

transfer to an impurity. In terms of ratios of rates,

xpZ = λ̃pZ/λ0, (3.20)

XZ = ΛZ/λ0, (3.21)

m = φλpp/λ0, (3.22)

the result of the moment method is [42]

∆λZ ≈ xpZXZ (2 +m+ xpZ +XZ) /
{
x2

pZ + (1 +XZ)2 +m2(1 +XZ)2

+xpZ(2 +XZ) +m[2(1 +XZ)2 + xpZ(2 + 2XZ +X2
Z)]
}
. (3.23)

If xpZ is much less than both 1 and XZ (i.e., λ̃pZ � λ0, λ̃pZ � ΛZ), a condition met even

in the impurity-doped calibration data of MuCap, all factors of xpZ can be neglected except

the overall scaling term in the numerator; we see that ∆λZ scales with the transfer rate

λ̃pZ . This observation supports the validity of the linear correction procedure described in

section 6.5.

In the end we apply the fitting (χ2-minimum shift) method of Appendix A.2 to best

match the experimental conditions of finite observation time interval, and results for ∆λZ

35



 (ppm)Zc
0 2 4 6 8 10 12 14 16 18 20

)
-1

 (
s

Zλ∆

0

1000

2000

3000

4000

5000 N

O

(a) ∆λZ .

 (ppm)Zc
0 2 4 6 8 10 12 14 16 18 20

 (
p

p
m

)
Z

Y

0

1000

2000

3000

4000

5000

6000

7000
N

O

(b) YZ .

 (ppm)Zc
0 2 4 6 8 10 12 14 16 18 20

/p
p

m
)

-1
 (

s
Zβ

0.775

0.78

0.785

0.79

0.795

0.8

N

O

(c) βZ .

Figure 3.3: Calculated Z > 1 impurity observables vs. impurity concentration cZ , for Z = N
(nitrogen) and Z = O (oxygen).

Element λpZ ΛZ YZ ∆λZ βZ γZ RZ

(1011 s−1) (106 s−1) (ppm) (s−1) (s−1/ppm) (s−1/ppm)
C 0.95 (Ref. [43]) 0.0376 168.3 136.1 0.809 6.32 0.128
N 0.34 (Ref. [44]) 0.0693 104.4 83.4 0.798 3.65 0.219
O 0.85 (Ref. [45]) 0.1020 361.3 283.1 0.784 2.63 0.297
Ne 0.08 (Ref. [46]) 0.2350 63.4 46.2 0.729 1.41 0.515
Ar 1.63 (Ref. [47]) 1.4000 2850.3 1561.4 0.548 0.64 0.855

Table 3.3: Z > 1 impurity quantities for cZ = 1 ppm. The references for the transfer rates
λpZ are listed in brackets next to the values The total capture rates ΛZ are from Ref. [32].
The capture yields YZ are based on Eq. 3.19, and the lifetime deviations ∆λZ are found from
the fit method described in the text.

versus the impurity concentration cZ are shown in Figure 3.3 for Z = N (nitrogen) and

Z = O (oxygen). Values for βZ , based on the fitting method for ∆λZ and Eq. 3.19 for the

impurity capture yield, are presented in the right panel of Fig. 3.3. The insensitivity of βZ to

cZ confirms the linear scaling of ∆λZ with cZ . The other impurity capture quantities defined

above, γZ and RZ , are similarly insensitive to cZ . Predictions for these values are shown

in Table 3.3 for cZ = 1 ppm of the common impurities carbon, nitrogen, and oxygen, and

the heavier elements neon and argon. Calculated Z > 1 capture time spectra for nitrogen,

oxygen, and argon are in Fig. 3.4.

The prediction from Table 3.3 of nearly equal values of βZ for carbon, nitrogen, and

oxygen is of note. If we observe with perfect efficiency a particular capture yield YZ without

knowing which of these species contribute, we can still approximately calculate the effect of

impurities on the lifetime:

∆λZ ≈ (0.8 s−1/ppm)YZ , (3.24)
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Figure 3.4: Calculated Z > 1 capture time spectra yZ(t), each normalized to the respective
total capture yield YZ (Eq. 3.19), for nitrogen (green), oxygen (red), and argon (blue).
Impurity concentrations of cZ = 1 ppm were specified for these plots.

Figure 3.5: (from Ref. [48]) Energy spectrum of muon capture on nitrogen measured in a
high-pressure hydrogen ionization chamber with 140 ppm N2 added to the H2 gas.
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where Z is C, N, or O. There is one major caveat: in a real experiment there will be an energy

threshold to detect Z > 1 capture events and a corresponding reduction of the observed yield,

Y obs
Z = εZYZ , with some efficiency factor εZ < 1. The final states of capture on Z > 1 nuclei

are generally complicated and dependent on details of nuclear structure [49]. The final-state

nucleus may break up be left in an excited state, leading to a broad kinetic-energy spectrum.

An example muon capture energy spectrum, as measured in an ionization chamber, is shown

in Fig. 3.5 for nitrogen.

The dependence of εZ on the impurity species and experimental energy threshold has

implications for the impurity correction in MuCap. Since both ∆λZ and the yield YZ scale

with impurity concentration cZ , a convenient method to correct for impurities is a zero-

extrapolation procedure based on the observed yield and calibration data in which cZ is

increased. The extrapolation is valid as long as the Z > 1 capture detection efficiency εZ

remains the same. The ideal case of calibration data with the same impurity species and

Z > 1 capture detection threshold — therefore the same εZ — was not achieved in the 2004

MuCap run. Fortunately, a high level of purity was maintained in the MuCap production

target, and the required correction to the lifetime is small. Practical details are described

later in Section 6.5 of the Systematic Effects chapter.

3.5 Diffusion

In addition to the high transfer rates of the muon to Z > 1 nuclei, another consequence

of the neutrality of µp and µd atoms is their ability to diffuse significant distances before

the muon disappears through capture or decay. The cross sections for µp+ H2 and µd+ H2

scattering are shown in Fig. 3.6. For µd+H2 scattering, there is a minimum in the scattering

cross section between 1 to 100 eV due to the Ramsauer-Townsend effect. Since the reaction

µp+d→ p+µd imparts 10’s of eV to the µd, much longer diffusion lengths occur compared

to µp. The diffusion of µp in H2 is itself not entirely neglible in the target conditions of the

MuCap experiment (φ = 0.01 and temperature T = 300 K), in part because of an initial

“epithermal” (energy greater thermal energy scale kT ≈ 0.03 eV) component of the µp

kinetic energy distribution. Detailed Monte Carlo studies were performed for the original

MuCap proposal [50], and results are published in Ref. [36] (from which Figs. 3.6 and 3.7

are taken). The effect of deuterium contamination is particularly clear in the right panel

of Fig. 3.7, the distribution of radial displacements of the simulated µp’s and µd’s at the

time of muon decay: the formation and diffusion of the µd are responsible for the long tail,
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Figure 3.6: (from Ref. [36]) Calculated cross sections for µp + H2 and µd + H2 scattering.

The transport cross section (dashed lines), defined as σtrans =
∫
dΩ(1− cos θ)dσ(θ)

dΩ
, takes into

account the anisotropy of the scattering, which in this case is strongly forward-peaked [36].
Solid lines are total cross sections.

Figure 3.7: (from Ref. [36]) Radial distributions of µ− decays in a simulation of µp and
µd diffusion in hydrogen gas (φ = 0.01) at temperature T = 300 K. Left: distributions
for decays in the indicated time intervals. Right: distributions in hydrogen gas with the
specified deuterium concentrations, for decays with t < 20 µs. The tail in the distribution
extending out to ∼ 10 cm is due to the small cross section for µd+ p scattering.
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which extends out to ∼ 10 cm, perhaps far enough to reach the walls of a vessel containing

the hydrogen gas in a real experiment. The left panel of Fig. 3.7 demonstrates the much

smaller scale of the µp displacements, which are very unlikely to result in collision with wall

material if the initial µp formation is more than ≈ 1 cm away. The µp diffusion cannot

be completely dismissed, though, because of a subtle but important effect in the MuCap

experiment related to tracking decay electrons back to the muon stop positions; this issue

will be explained in Section 6.6 of the Systematics chapter.
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Chapter 4

The MuCap Experiment

4.1 Design Considerations

In order to avoid ambiguities in the interpretation of the result, muons must be stopped in

hydrogen gas that is extremely pure — elementally and isotopically — and has a density of

φ ∼ 1% of liquid hydrogen density. At this density, the muon-atomic hyperfine transition

from the n = 1 triplet to singlet state is fast, such that all µp atoms are in the singlet ground

state well-within 100 ns. Also, the rate of muon-molecular (pµp) formation is relatively slow,

and only ≈ 4% of all muons reach the molecular state before disappearing. To avoid lifetime

corrections from transfers to Z > 1 nuclei, elemental impurity concentrations cZ must be

less than ∼ 10−8. Finally, the deuterium concentration must be small principally because

of the anomalously small cross-section for µd + p scattering, such that the µd can scatter

∼ 10 cm, far enough to encounter the walls of the vessel containing the hydrogen.

The low target density presents a challenge to reliably stop incident muons in the gas

and away from all Z > 1 materials. Given the small branching ratio of muon capture on

the proton (≈ 0.16%) and the desired precision of the result (ΛS to 1%), wall stops must

be avoided to better than 10−5. This is accomplished with the central detector of MuCap,

a Time Projection Chamber (TPC) operating on the target gas itself; the TPC is the key

enabling technology of MuCap. Whereas a previous measurement in hydrogen gas employed

veto counters around the walls of the target [3], in MuCap only muons that stop within

the TPC fiducial volume are accepted in the data analysis. The practical difference in the

present approach, of accepting “good” muons rather than rejecting “bad” muons, is that the

detectors need not have extremely high efficiency, and muon stops in detector wires are not

problematic.

The all-neutral final state of muon capture on the proton presents an additional experi-

mental challenge. An absolute measurement based on neutron detection would involve simply

counting the number of good muon stops with subsequent emission of a 5.2 MeV neutron, and
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dividing by the total number of good muon stops. The capture rate is then approximately

this branching ratio multiplied by the free muon decay rate, i.e., ΛS ≈ λ+
µNneutrons/Nmuons,

where Nneutrons is the number of good muon stops followed by neutron emission, and Nmuons

the number of good muon stops. The problem with this method is the combination of low

efficiencies (generally ∼ 10%) and difficulty of absolute calibration of neutron detectors,

and the large background of Michel electrons. For a 1% precision measurement of ΛS, the

neutron detector efficiency would have to be known to the same relative precision.

Because of the difficulties with neutron detection, the MuCap experiment instead uses

the “lifetime technique”: the capture rate is approximately determined by the difference

between the µ− lifetime in hydrogen and the free µ+ lifetime. Assuming CPT invariance

(equal lifetimes of the free µ− and µ+), λ−µ = λ+
µ + ΛS + ∆λcorr, where ∆λcorr is a small

correction for molecular formation and a bound-state modification to the free muon lifetime.

An absolute measurement is therefore not required; only the shape of the electron or neutron

appearance time spectrum needs to be measured. The tradeoff is we are subtracting two large

numbers, λ+
µ from λ−µ , to get the ∼ 10−3 smaller ΛS. Therefore, to get ΛS to 1% precision,

λ−µ and λ+
µ must be known to ∼ 10−5 precision. Such a high-precision lifetime measurement

presents its own challenges, as all time-dependent detection efficiencies correlated to the

muon entrance time must be understood.

4.2 Overall Scheme

A simplified cross-sectional diagram of the MuCap detector, including the various detector

elements, is shown in Fig. 4.1. Each detector element is named according to its measure-

ment principle — scintillator (SC), multiwire proportional chamber (PC), or time projection

chamber (TPC) — and, except for the TPC, the particle it is intended to measure — muon

(µ) or electron (e). In chronological order of the detectors encountered by the example muon

decay event shown in the figure, there are the muon detectors: 1) the µSC for fast timing,

giving the muon (absolute) time tµ; 2) the µPC for additional pileup protection of spatially

separated muon entrances; 3) the TPC for tracking to the stop position. Next are the elec-

tron detectors traversed by the decay electron: 4) ePC1, the inner cylindrical wire chamber,

for (φ, z) detection at a smaller radius; 5) ePC2, the outer cylindrical wire chamber, for

(φ, z) detection at a larger radius; 6) the eSC for fast timing, giving the (absolute) electron

time te. A muon decay time spectrum is built up from the time differences ∆t = te − tµ of

many such events. A fit of the time spectrum to a simple exponential function yields, apart
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Figure 4.1: Simplified cross-sectional diagram of the MuCap apparatus, showing the muon
and electron detectors described in the text. The particle paths of an example event, a muon
entrance followed by decay into an electron (neutrinos are not shown), are indicated by the
arrows.

from small corrections, the desired µ− lifetime in the singlet µp atomic state.

Key features of the MuCap experiment are the following:

• Muons are stopped in purified, deuterium-depleted hydrogen gas at 10 bar and room

temperature. The density at this pressure and temperature is φ = 0.0112 relative to

liquid hydrogen, and most muons are in the singlet atomic state.

• Muons are fully tracked by a time projection chamber (TPC) operating on the target

gas itself. Only those that stop well-within the TPC fiducial volume are accepted.

• The target gas is continuously circulated through cryogenic adsorbers to maintain low

levels of Z > 1 impurities.

• The effect of non-negligible deuterium in the production data is corrected for by a

zero-extrapolation procedure, in which a calibration point is based on data with ∼ 100

times the deuterium concentration of the production data.

• The effect of residual Z > 1 impurities is corrected for by in situ impurity capture

monitoring by the TPC combined with calibration data at much higher impurity con-

centration.

• The measurement of ΛS is based on the lifetime technique. Electrons from muon decay

are detected and timed to build up an electron appearance time spectrum, giving the
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net lifetime of the µ− in hydrogen. Comparison with the µ+ lifetime gives the additional

loss rate of µ− in hydrogen, which (aside from small corrections) is attributed to muon

capture.

• The muon decay electrons are tracked to allow reduction of background events by

requiring that the electron track points to the parent muon stop position. These

vertex cuts also enable in situ deuterium concentration monitoring, in which tighter

vertex cuts result in higher loss rates from µd atoms diffusing away from the allowed

regions.

• Muon and electron detectors are kept as separate as possible to avoid any interference

or cross talk that could distort the precision lifetime measurement.

• Muon pileup events, i.e., events in which an additional muon entrance is detected

within a certain time interval of a given muon entrance, are rejected, a condition called

“pileup protection.” Allowing only one muon at a time circumvents many problems due

to TPC tracking ambiguities and detector deadtimes, which would otherwise distort

the lifetime spectrum.

The major subsystems of the MuCap experiment — devoted to muon detection, electron

detection, hydrogen gas handling, and data acquisition — are presented below with selected

details. This chapter is concluded with a summary of the different experimental conditions

during the 2004 data-taking period, which define data sets of interest in the analysis.

4.3 Muon Beam

The experiment was installed in the πE3 area at the Paul Scherrer Institute for the exper-

imental running period of late September through November of 2004. The beamline was

tuned to transport muons with central momentum P = 32.6 MeV/c and rate 20 kHz (direct

current). Background electrons in the beam were reduced by an ~E × ~B separator set to

allow only muons of the central momentum to pass. In the ideal situation, each muon would

be stopped in the center of the hydrogen target, and no other muons would enter during

the measurement period of 25 µs. In practice, the muons are stopped over a broad distri-

bution of positions within the low-density hydrogen target, due to 1) the finite momentum

distribution of muons transported by the beam, and 2) range straggling in materials placed

before the hydrogen target. A beam tune was developed to minimize the momentum spread,
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Figure 4.2: Photo of the last beamline elements before the detector, showing the focusing
quadruple magnets and the last set of variable beam apertures (slits). The e-detector is
visible on the left in its rolled-back position.

and material in front of the hydrogen was minimized as much as possible. The net result

was a gaussian distribution of muon stop positions in the hydrogen gas, as measured with

the muon detectors described below, having longitudinal spread σz = 8.0 cm and transverse

spread σx = σy = 3.1 cm. Approximately 65% of incident muons stopped within the active

region of the central muon detector within the hydrogen gas. The beam rate of 20 kHz was

optimal in terms of the net rate of incident muons that are separated in time from all others

by at least 25 µs.

4.4 Muon Detection

The muon detectors allow selection of each event in which an incident muon stopped in the

hydrogen gas away from any Z > 1 material, and no other muon entered within ±25 µs.

4.4.1 Entrance Detectors

Entrance muon detectors provide timing of incident beam muons and enable selection of

events in which only one muon entered the target (“pileup protection”). The detectors are
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designed to avoid degrading the beam, which would adversely affect the spatial stopping

distribution of muons within the hydrogen gas. The elements between the beam window

and the entrance window of the pressure vessel containing the H2 are described below in the

order encountered by a beam particle.

The first detector is a thin muon scintillator, the µSC, to privide a fast timing signal

for tµ. In the early part of the 2004 data-taking period (Run8), a 500-µm-thick scintillator

served as the µSC. Later it was changed to a scintillator of half the thickness in an effort to

reduce material in the beam path, but the improvement to the stopping distribution in the

target was marginal. The inefficiency of the µSC, however, increased severely in going to

the thinner target. After the µSC is the µSCA, a scintillator with a 35-mm-diameter hole in

the middle to allow most beam particles to pass. Its purpose is to veto muons that are too

far off the beam axis. Immediately behind the µSCA and aligned to it is a lead collimator

also with a 35-mm-diameter hole.

A multiwire proportional chamber, the µPC, follows the lead collimator. The µPC has

two anode planes, each with 24 wires, and 25-µm-thick aluminized mylar cathode planes.

The anode planes are oriented such that one provides horizontal (x) positions of beam

particles, and the other provides vertical (y) positions. The µPC greatly improves the

pileup-protection efficiency compared to the µSC alone. It was indispensible in this respect,

as will be demonstrated in Chapter 6.

4.4.2 Time Projection Chamber

The time projection chamber (TPC) detects ionizing particles within a 15×12×28-cm sen-

sitive volume free of Z > 1 material. An incident muon leaves an ionization trail in the

hydrogen gas with increasing intensity as it slows, depositing the most amount of energy per

track length at the stop position (see Section 3.1). Electrons from the ionization track drift

in a uniform 2 kV/cm electric field towards a multiwire proportional chamber (MWPC) at

the bottom of the volume. When the electrons enter the region of high electric field around

the small-diameter anode wires of the MWPC, a cascade process begins: electrons are ac-

celerated and collide with gas molecules with enough energy to ionize the H2, releasing more

electrons to do the same until a large number reach an anode and are detected. Ions created

in the process drift back to the cathode planes of the MWPC, where they are also detected.

A photograph of the TPC is shown in Fig. 4.3a. Most wires are not visible in the

photograph, with the exception of the large wires wrapped around the posts. The upper
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(a) TPC. (b) Pressure vessel.

Figure 4.3: (a) Photo of TPC with the pressure vessel removed and (b) photo of the alu-
minum pressure vessel, containing the hydrogen gas and TPC, pulled back from its docking
position in the center of the e-detector. In these views, muons enter from the right side. (The
red coils mounted on the pressure vessel are parts of a cos θ magnet to provide a ∼ 50 Gauss
µSR field for µ+ measurements, which are not discussed in this document.)

frame, which has wires strung across it to define an equipotential surface, is held at a voltage

of ≈ 30 kV creating the 2 kV/cm drift field, leading to a drift velocity of electrons in the

10-bar hydrogen of vdrift ≈ 5.5 mm/µs. The wires wrapped around the posts are connected

to a voltage divider, which sets the potentials of these wires improve the field uniformity in

the drift region. The MWPC is composed of the closely-spaced frames at the bottom. An

anode plane with 4-mm-spaced, 25-µm-diameter tungsten-gold wires running transverse to

the long axis of the TPC is sandwiched between two cathode planes. Each cathode plane has

1-mm-spaced, 50-µm-diameter wires strung parallel to the long axis. The cathode planes are

held at ≈ −5.0 kV, while the anode plane is at ground potential. The TPC frame materials

were carefully chosen to be compatible with baking at 115 C, an important step in the

preparation of a high-purity target volume. At an operating voltage of −5.0 kV across the

3.5-mm spacing (“half-gap”) between the anode and cathode planes, the gain of the MWPC

is about 60, doubling for every ∼ 200 V the voltage is increased.

Each of the 75 anode wires is connected to a charge-integrating preamplifier. Cathode

wires are tied together into 35 groups (strips), each comprising four adjacent cathode wires

except the edge strips, which include a few more. Each cathode strip is connected to a

charge-integrating preamplifier. An example of the signal produced by the MWPC anode

wires is shown in Fig. 4.4 for a muon stop followed by a Z > 1 capture event (a rarity in

MuCap). Analog data like that shown in Fig. 4.4a is recorded for special events, such as
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(b) TDC data.

Figure 4.4: Example of raw data from a muon stop event for several adjacent wires of
the TPC. The times are with respect to a muon entrance at tµ = 0. The analog signals
are displayed in (a), and the corresponding 3-level discriminated data are in (b). The
discriminator levels are set low (green) for fast muons, high (blue) for slow muons and stops,
and very high (red) for recoil nuclei from Z > 1 captures. This example is a Z > 1 capture
event, a rare occurance in the high-purity hydrogen maintained in MuCap.

Z > 1 impurity captures, that involve anode wires in a middle section of the TPC. Data

from all wires and every event is recorded in the coarse-grained form shown in Fig. 4.4b.

The analog signals are sent to discriminators with three treshold settings: the lowest (“EL”)

is set above noise to trigger on fast muons, the high (“EH”) threshold is set to pick up

the larger signal from slow muons and stops (the Bragg peak), and the very-high (“EVH”)

threshold is set above the Bragg peak to trigger on the heavily-ionizing recoil nuclei from

Z > 1 captures. Custom data-acquisition modules record the state of all discriminator

outputs every 200 ns (zero-words, when no signal out of a group of sixteen wires are above

threshold, are suppressed).

The position of a muon stop in 3-D can be determined from the TPC data. The anode

and strip that the muon stops on is unambiguously given by high-threshold hits preceded by

a line of low-threshold hits. The anode (strip) gives the location in z (x). The height y in

the TPC is not completely determined by the TPC data itself, but requires knowing when

the event occurred. The height from the bottom of the drift region is

∆y = vdrift(Tdrift − t0), (4.1)

where Tdrift is the time delay after the muon entrance for the signal to be detected in the

MWPC, and t0 is the drift time across the 3.5-mm half gap of the MWPC (∼ 500 ns). The

distribution of stop positions determined this way are shown in Fig. 4.5.
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Figure 4.5: Distribution of muon stop positions determined by the TPC. The projection
onto the xz- (yz-) plane is displayed in the top (bottom) panel. The z-axis is parallel to the
beam axis, and muons enter from the left.

The TPC operates within an aluminum pressure vessel containing hydrogen gas at 10 bar

and room temperature. The wall of the vessel is made of aluminum and is as thin as safety

allows to minimize scattering of decay electrons. The 4-mm-thick aluminum wall is the

primary scatterer for the majority of electrons that do not hit the TPC frames, limiting the

ability of the electron detector to track back to the muon stop position. Figure 4.3b shows

the pressure vessel installed in the experimental area. The pressure vessel is docked in the

middle of the electron detector during data-taking.

4.5 Electron Detection

The electron detector times and tracks decay electrons originating from within pressure

vessel. Its cylindrical geometry covers approximately 3π solid angle of the TPC active

volume placed in its geometric center. An outer scintillator hodoscpe barrel provides the

times te of electrons. Tracking in two concentric, cylindrical wire chambers allows selection of

events in which the electron points back to the muon stop position, reducing background and

permitting a method to monitor the deuterium content of the target. Figure 4.6 is a diagram
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Figure 4.6: Cutaway diagram of the MuCap apparatus showing more of the support structure
than in Fig. 4.1.

of the key MuCap detectors and may be a helpful reference in the following descriptions of

electron detector components.

4.5.1 Scintillator Hodoscope Barrel

Fast timing of electrons is the purpose of the eSC, a scintillator hodoscope comprising sixteen

segments, each with an active area of 90×15 cm placed with the long axis parallel to the

beam axis, together forming a barrel with a diameter of 78 cm. Each eSC segment has two

5-mm-thick scintillating plastic layers, each viewed on both ends by photomultiplier tubes.

The total of 64 photomultiplier signals are input via discriminators to data acquisition

modules (CAEN V767 time-to-digital converters) that record the time of each leading edge

with 1.25 ns precision. The time difference between detection by the upstream and down-

stream photomultipliers provides some information about where the particle hit along the

length of the segment. A study that involved placing a beta-source along the length of one

of the segments found vgond = 67 mm/ns in the relation z = vgond(tupstream − tdownstream),

where t is the time of detection at the indicated end.
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Parameter ePC1 ePC2
Number of anode wires 512 1024
Number of inner cathode strips 192 320
Number of outer cathode strips 192 320
Operating voltage +2.6 kV +2.8 kV
Half-gap 4 mm 4 mm
Diameter at anodes 384 mm 640 mm
Active length 580 mm 800 mm
Anode spacing 2.356 mm 1.963 mm
Inner cathode screw angle 43.81 deg. 44.31 deg.
Outer cathode screw angle 46.19 deg. 45.74 deg.

Table 4.1: Physical parameters of the electron proportional chambers (ePCs).

All four photomultipliers on a given segment are required to be in coincidence in the data

analysis. The 4-fold coincidence reduces the level of random noise from the eSC, generally

leaving only signals from real particles.

4.5.2 Cylindrical Multiwire Proportional Chambers

The electron tracking detectors are two concentric, cylindrical multiwire proportional cham-

bers, each with readout of anodes and cathode strips, to give the complete (φ, z) positions

(in cylindrical coordinates) of an electron track at two different radii. The smaller chamber

(ePC1) sits just outside the pressure vessel. The larger chamber (ePC2), with about twice

the diameter as the smaller one, sits somewhat inside the scintillator hodoscope barrel (eSC).

Anode wires run parallel to the cylinder axis, and cathode strips wrap around the chamber

making an angle of ≈ 45 degrees with the anodes. The inner and outer cathode planes

wind in opposite directions, providing redundancy if the anode and both cathode planes of

a chamber are required. Physical parameters of ePC1 and ePC2 are given in Table 4.1.

The anode and cathode planes are fully instrumented with chamber-mounted, charge-

integrating-preamp-discriminator cards. Although mounting the preamps directly on the

chambers reduced electronic noise into the sensitive preamplifiers, it was necessary to shield

the cards and the entire chamber from external electromagnetic interference. Copper mesh

was placed 1) inside ePC1, 2) inside ePC2, and 3) outside ePC2 (see Fig. 4.7). The outputs of

the preamp/discriminator cards are connected to custom data acquisition modules through

40-wire twisted pair cables (32 wires are used for signals, the remaining for for threshold

setting and preamp power), and each cable is wrapped in braided wire shielding. The

custom data-acquisition modules, called compressors, are based on FPGA circuitry. The
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Figure 4.7: Photos showing (left) ePC2 in the lab during high-voltage training and electronics
tests, and (right) the downstream end of the MuCap electron detector with both ePCs in
place prior to cabling. The copper shielding mesh is visible in the photos.

discriminated signals from the ePC electronics are transmitted as low-voltage differential

signals (LVDS) to the compressors, which encode them into time–channel words that are

saved in a buffer.

4.6 Hydrogen Gas System

4.6.1 Protium Production

The protium gas is produced by electrolysis of deuterium depleted water and filled into the

target volume through a palladium filter. The 40-liter target volume required 400 STP liters

of protium for the gas pressure of 10 bar. An additional 800 STP liters of protium was

produced to fill the circulating system described below.

The deuterium concentration of the target gas must be known to correct for its effect

on the MuCap lifetime result. Measurement of the low concentration of residual deuterium

content is difficult, but a system based on accelerator mass spectrometry developed recently

at ETH Zürich [51] was adapted to this purpose to measure the MuCap production gas. The

deuterium concentration was found to be cd = 1.44 ± 0.13 ppm. An alternate method to

determine cd based on MuCap data analysis is described in Chapter 6.

52



Figure 4.8: Photo of the downstream end of the MuCap apparatus with the TPC pressure
vessel docked in the middle of the e-detector.

4.6.2 Circulating Hydrogen Ultra-Purification System

A system was developed for the MuCap experiment to continuously circulate the 10-bar hy-

drogen gas through cryogenic adsorbers, thereby maintaining a very low level of Z > 1

impurities. The circulating hydrogen ultra-high purification system (CHUPS) [52] em-

ploys an adsorption cryopump, which alternately adsorbs hydrogen through a one-way valve

into liquid-nitrogen-cooled, activated carbon, and heats the carbon to release the hydrogen

through another valve. The flow is directed through zeolite adsorbers for purification. The

impurity levels throughout the Run8 experimental period are shown in Fig. 4.9. External

measurements were made of the nitrogen and oxygen concentrations at a few points during

Run8, confirming these to be very low after purification by CHUPS. The Z > 1 capture yield

was measured in situ by the observation of recoil nuclei by the TPC, giving a signal propor-

tional to the impurity concentration as described in Chapter 3. The capture yield itself does

not reveal the exact impurity species, but subsequent measurements with a humidity sensor

installed inline to the circulation system confirm water as the primary contaminant. The

impurity level was low enough that it can be corrected for to sufficient accuracy through the

arguments of Chapter 6.
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Figure 4.9: (from ref. [52]) Hydrogen flow rate, gas chromotography measurement results,
and observed impurity capture yield (from the analysis described in Chapter 6) vs. time.
The grey bands highlight periods when the purification system was turned off or reduced,
and outgassing of impurities from interior surfaces of the target volume is evident by the
increase of the capture yield.

4.7 Data Acquisition

The data acquisition system collects data from the various subsystems into raw data files

for offline analysis. Data are collected in cycles of continuous readout from each detector for

an average “live time” period of 120 ms, followed by a few milliseconds pause to clear out

certain buffers. The cycle is repeated, maintaining a live time of better than 90%.

Most of the raw data consists of times of discriminated signals from individual muon

and electron detector channels. Muon and electron signals were routed into different mod-

ules, following the principle of keeping muon and electron paths as separate as possible to

avoid undue interference. Signals from the muon entrance detectors, MuSC and MuPC,

were handled by a CAEN V767 time-to-digital conversion (TDC) module. Discriminated

photomultiplier signals were routed into a separate CAEN V767 TDC. The custom-build

data acquisition modules developed for the TPC and a separate system for the ePCs were

both mentioned above. Data were continuously transferred from the modules via PowerPC
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Data Set TPC HV Target Condition Comment
Prod52 5.2 kV production gas early runs
Prod50 5.0 kV production gas most data
Prod48 4.8 kV production gas late runs
CalibN 4.8 kV nitrogen-doped production gas Z > 1 calibration
CalibD 4.8 kV deuterium-doped production gas cd calibration
CalibNat 4.8 kV natural hydrogen cd calibration

Table 4.2: Data sets defined by different run conditions.

VME controllers to PCs across gigabit ethernet.

In addition to the TDC data, some analog-to-digital (ADC) data were stored for special

studies. Analog signals from sixteen anodes in the center of the TPC were recorded by flash

ADCs. They were read out at most once per 120-ms live time block, allowing only one

event per block to be recorded by these modules. Trigger logic was implemented to catch

Z > 1 capture candidates, and some muon stops were recorded for normalization. These

data provide a method to find the Z > 1 capture yield for muons stopped in the center of

the TPC. The other method, described later in Chapter 6, is to use the TDC data. The

additional information in the flash ADC data can be used to find the energy spectrum of

the recoil products.

4.8 Run Conditions

The 2004 run period (“Run8”) was mainly devoted to taking data with µ− stopped in

ultrapure, deuterium-depleted hydrogen. This is considered the production data, the primary

measurement of MuCap. Some µ+ data were accumulated to study backgrounds, such as

those relevant to the Z > 1 capture identification. After the main production period,

calibration data were taken in which the target conditions were changed, for example by

adding a small, known amount of a Z > 1 impurity. Runs with natural hydrogen were also

taken to calibrate the effect of deuterium on the lifetime measurement. The total raw data

volume (compressed) was about 5 TB on disk.

The production data is subdivided depending on the high voltage setting of the TPC’s

multiwire proportional chamber. It was originally planned to set the voltage to 5.4 kV or

higher to detect rare events of interest, in particular the Alvarez muon from pµd fusion,

which would have given another means to infer the deuterium content of the production

gas. Instead a hot spot appeared in the TPC, that is a point where sparking was occur-
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ing, preventing operation at the anticipated 5.4 kV. After some early data with the TPC

at 5.2 kV, the voltage was reduced further to 5.0 kV, where it remained for most of the

production period. A few production runs were taken at 4.8 kV, enough to see the relatively

large signals from slow muons. The results of the 2004 analysis are from the data set with

the TPC at 5.0 kV.

Calibration runs followed the production running period. The purification system was

bypassed, and nitrogen was mixed into the production gas for a concentration cN ≈ 11 ppm.

The data set defined by this target condition is called CalibN and will be used to relate the

observed Z > 1 capture yield to the effect of the impurities on the muon lifetime.

Two calibration sets were intended to inform the correction for deuterium. After the Cal-

ibN runs, the purification system cleaned out the production gas and was again bypassed.

Natural hydrogen, with deuterium concentration cd ≈ 122 ppm, was mixed into the produc-

tion gas through a palladium filter for a net deuterium concentration of cd ≈ 17 ppm. The

data under these conditions is called CalibD. For unknown reasons the Z > 1 capture yield,

as monitored by the TPC, was more than ten times higher than in the production data. The

high level of Z > 1 contaminants could spoil the calibration for deuterium, and the target

gas could not be cycled through the purification system without isotopically contaminating

the entire system. It was decided to throw away the CalibD gas and refill natural hydrogen

again through a palladium filter, but this time without diluting with the production gas.

The data with natural hydrogen comprise a set called CalibNat.

Additional calibration data were taken in the 2006 run period. A water permeation tube

was installed in the hydrogen circulation system to maintain a low, steady-state concentra-

tion of water. Other calibration data were taken again with nitrogen-doped production gas.

The TPC high voltage was set to 5.45 kV in the 2006 run period. These data sets are used

to determine the correction for Z > 1 impurities as described in Chapter 6.
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Chapter 5

Data Analysis

The analysis software is designed to translate raw data into a collection of “physics objects”

— mainly muon stops in the TPC and electron tracks through the e-detector — from which

quantities will be derived and filled into histograms depending on various selection criteria

(“cuts”). For example, muon–electron time differences are filled into histograms to build up

muon decay-time spectra, perhaps requiring the reconstructed electron track to be within

a certain impact parameter (distance of closest approach) with respect to the muon stop

position. Basic indicators of detector performance, rates, and data-quality are also studied.

Two independent analyses of the 2004 MuCap data were performed: the one described

in this document was developed by the author at the University of Illinois at Urbana-

Champaign (UIUC). The other analysis was conducted at the University of California,

Berkeley (UCB). Individuals involved directly or peripherally in either analysis were blinded

to the actual master clock frequency, which was known to be detuned from the nominal

fclock = 100 MHz by ∼ 10−3fclock, the exact amount known to only two people. It is as-

sumed throughout the analysis that fclock is exactly 100 MHz until a final unblinding step,

when λMuCap, the observed µ− disappearance rate with all internal systematic corrections

applied, is adjusted based on the actual clock frequency f actual
clock by a factor f actual

clock /(100 MHz).

As an additional level of blinding intended to prevent false convergence of UIUC and UCB

results, each person adjusted their own results by an individual, secret offset ∼ 10−3 before

reporting them to the rest of the collaboration. No such additional offset is imposed in this

document.

The analysis steps to form muon and electron objects may be considered “low-level,” in

the sense that individual detector elements are studied in detail. This is in contrast to the

generally “high-level” construction of lifetime histograms and the studies of systematic effects

in Chapter 6, which are based on properties of the muon and electron objects identified in the

low-level analysis. The low-level analysis reads the raw data produced in the experiment.

Each raw data file contains consecutive DAQ live-time periods (“blocks”) of ≈ 120 ms,

during which all data from every detector were recorded without interruption. The software
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operates on these 120-ms blocks individually, finding coincidences within detector planes

and between them, filling in a series of diagnostic histograms, identifying muon tracks in the

TPC data, finding coincidences between e-detector planes, ultimately constructing muon and

electron objects according to specified definitions. Once these objects are formed, they are

written to file for subsequent higher-level analyses. By design, the UIUC analysis maintains

logical separation of muon and electron signals when forming the physics objects.

Many of the systematics studies involve varying the muon or electron definition, and this

is anticipated in the low-level analysis. Several versions of electron objects are constructed

in parallel, with more or less strict inter-plane coincidence requirements: for example, an

electron could be defined by the eSC only or by coincidence between all ePC and eSC planes.

In the case of muon stops, objects formed per the minimal definition — a single hit in one

entrance detector plane and a track in the TPC — comprise a superset of all other muon

definitions studied; thus, parameters are included in each muon object for possible rejection

at a later stage if it fails a stricter cut, such as smaller fiducial volume or coincidence with

additional entrance detector planes.

5.1 Muon Definition

The minimal muon stop definition requires 1) a hit in the MuSC separated from all other

MuSC hits (“pileup protected”), or any MuSCA hit, by at least 25 µs, and 2) a TPC high-

threshold (“EH”) signal within 0–25 µs of the MuSC hit. The muon entrance time is provided

by the MuSC, and the presence of an EH hit in the TPC indicates a possible Bragg peak

of a muon stop. Pileup protection is necessary to avoid ambiguities in associating tracks in

the TPC with the correct entrance time. Muon stops are identified in the TPC data and

characterized by stop positions and track-quality indicators for later selection.

5.1.1 Muon Entrances

Although pileup protection with the MuSC rejects on average ≈ 99% of the events in which

an additional muon entered, much better rejection is achieved by including the MuPC. The

MuPC has two independent planes, one with anodes running vertically to give the x-position,

and the other with anodes running horizontally to give the y-position. Time-coincident

singles hits in a given plane are clustered together if the wires are next- or next-nearest

neighbors — the usual treatment of a multiwire proportional chamber, in which a single
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Figure 5.1: Relative counting inefficiencies of the muon entrance detectors vs. time (here
a “Run” is a data-taking period of typically 12 minutes). The vertical red lines show the
subdivision of the Prod50 data into chronological groups of similar total statistics. The
MuSC was changed from a 500 µm-thick scintillator to one of half the thickness after about
12750 on the horizontal axis, corresponding to a 100-fold increase in MuSC inefficiency.
Other periods of especially poor MuSC efficiency are obvious from this study.

particle may be detected in more than one nearby channel. Clusters in the MuPC x- and

y-planes can be checked for interplane coincidences to define (x, y) coordinates of muon

entrances. In case of pairing ambiguities such as two hits in the x-plane time-coincident

with a hit in the y-plane, the analysis creates a separate (x, y) pair for each possibility.

In the strictest muon entrance definition, the MuSC hit must be coincident with a single

MuPC (x, y) hit, and there can be no other hits in the MuSC, MuSCA, or any MuPC wire

within the ±25 µs pileup-protection gate. The pileup protection by the MuPC stabilized

what would otherwise have been vastly different levels of undetected pileup during the run.

A special study was performed to check the relative efficiencies of the entrance detector

planes. The trigger is a MuSC hit (pileup-protected with itself) with a coincident muon stop

in the TPC, and the fraction of triggers with coincident hits in MuPC planes is found. In

a variation to check the MuSC, the trigger is a MuPC (x, y) hit (pileup-protected with all

MuPC wires) coincident with a muon stop, and the fraction of triggers with coincident MuSC

hits is found. The results are shown in Fig. 5.1. A different study, described in Section 6.2

of Chapter 6, finds the overall pileup-protection inefficiency to be ∼ 10−5 throughout Run8

if the MuPC planes are included.
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5.1.2 Muon Stops

The concepts involved in characterizing events in the TPC are briefly described in this

section.

Region of Interest (ROI). Each muon entrance time tµ defines a ROI in the TPC data

of 0 ≤ tTPC − tµ < 25 µs, where tTPC is the absolute signal arrival time at the MWPC of

the TPC. Since the maximum drift time in the TPC is ≈ 22 µs, the ROI contains all events

in the TPC coincident with the muon entrance time. The pileup protection by the entrance

counters means, to the extent the entrance counters are efficient, up to one muon track per

ROI is expected.

Pixel Space Mapping. The TPC data are the 200-ns-discretized times-over-threshold

of signals in each anode and (4 tied together) cathode wire of the MWPC. A pixel space

(x̃, ỹ, z̃) is defined that maps to real space (x, y, z) (divided into a lattice of points) assuming

all events are prompt with the muon entrance. More precisely, projections of the spaces onto

2-D are observed. TPC anodes data give the projection onto the z̃ỹ plane:

z̃ = (Anode Number) ↔ z, (5.1)

ỹ = (tTPC − tµ)/(200 ns) ↔ y; (5.2)

TPC cathodes data give the projection onto the x̃ỹ plane:

x̃ = (Cathode Number) ↔ x, (5.3)

with the same relation in the y-dimension as for the anodes. In terms of the wire spacing and

drift velocity vdrift = 5.54× 10−3 mm/ns (based on tTPC − tµ coincidence time histograms),

∂x

∂x̃
= 4 mm, (5.4)

∂y

∂ỹ
= vdrift × (200 ns) ≈ 1.1 mm, (5.5)

∂z

∂z̃
= 4 mm (5.6)

An example of TPC data represented in pixel space is shown in Fig. 5.2a. Each non-zero

pixel corresponds to a low-threshold (EL) hit, represented by a green pixel. If the signal was

large enough to be over the high threshold (EH), which usually indicates the Bragg peak of

a muon stop or an impurity capture event, the pixel in the display is blue. In the rare case
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Figure 5.2: Illustration of the analysis steps to identify a muon stop in the TPC data. Actual
data from a muon entrance are shown, and the muon enters from the bottom in each panel.
(a) The raw data of a muon stop, represented in “pixel” space, is shown for anodes (bottom
panel) and cathodes (top panel). Green pixels for low-threshold hits and blue are for high-
threshold hits. The remaining panels show the results of analysis steps applied to the data in
(a). (b) These are the anode pixels connected by next-nearest neighbors into a single cluster
that includes at least one high-threshold pixel. (c) The cross-hairs (dashed red lines) show
the location of the muon stop as determined in the analysis. (d) The anode pixels identified
as part of the Bragg peak are displayed as inverted triangles, and the cathode pixels used
for fiducial volume cuts are contained within the purple box in the upper panel.

of a very-high-threhold (EVH) hit, as from an impurity capture event, a red pixel is drawn

(none are present in Fig. 5.2).

Pixel Clustering. Anode pixels within the ROI are clustered into “pixel islands,” groups

of connected low-threshold (EL) pixels with at least one high-threhold (EH) pixel in the

group. A gap of one pixel is allowed in the clustering, so each pixel is connected to the

rest of the island by a neighboring or next-nearest-neighboring pixel. Each pixel island is a

candidate muon stop event. In Fig. 5.2b, pixels included in the island are displayed. The

maximum and minimum extents of the EL and EH pixels included in the island — denoted

by z̃max
EL , z̃min

EL , z̃max
EH , and z̃min

EH — are indicated by the horizontal dashed lines in the figure.

Only one EH-containing island is found in this ROI, the predominant situation after muon

entrance pileup protection. If another pixel island had been found, it would have been
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handled as a separate muon object with the same entrance time tµ.

Muon Stop Definition. The requirements a pixel island must satisfy to be considered a

muon stop event are very simple:

z̃max
EL − z̃max

EH ≤ 2, , (5.7)

z̃min
EH − z̃min

EL ≥ 5. (5.8)

Equation 5.7 cuts tracks that have too many EL pixels downstream of the apparent Bragg

peak, which would be inconsistent with an actual muon stop traveling in that direction.

Equation 5.8 further ensures the track is consistent with a muon orginating from upstream,

which should have sufficient EL pixels leading up to a Bragg peak. The reason for such a

simple track definition, as explained in Section 6.3 of the Systematics chapter, is to avoid a

time-dependent cut caused by interference from decay-electron-induced EL pixels included

in the pixel island.

Muon Stop Location. Typically the position of the earliest (minimum ỹ) of the most

downstream anode EH pixels (i.e., anode EH pixels with ỹ = ỹmax
EH ) is taken as the stop

position (ỹstop, z̃stop) in the ỹz̃-plane. In the rare case of a track having a large angle with

respect to the z̃ axis, an anode EH pixel that better represents the stop position is chosen

according to slightly different criteria that will not be discussed here. The stop position in

x̃ is taken as the average of all cathode EL pixels with ỹ = ỹstop. The stop position thus

found is shown by the intersection of the dashed lines in Fig. 5.2c (along with a best-fit line

to the EL pixels). If there are no cathode EL pixels with exactly this ỹ position, then the

search for cathode EL pixels is repeated with ỹstop − 1, then ỹstop + 1, etc.; the search is

expanded in ỹ as far as ỹmin
Bragg − 1 ≤ ỹ ≤ ỹmax

Bragg + 1, where the subscript “Bragg” refers to

anode EH pixels of the identified Bragg peak. The anode EH pixels included in the Bragg

peak, marked by inverted triangles in the lower panel of Fig. 5.2d for the example track,

are found by next-nearest-neighbor clustering of anode EH pixels starting on (ỹstop, z̃stop).

A muon stop without a coincident cathode pixel is not rejected outright but will fail the

subsequent fiducial volume cut, since the x-position is undetermined.

Fiducial Volume Cut. The purpose of this selection is to keep only muons stopped well-

away from the edges of the TPC’s active volume. Two fiducial volumes are imposed: an

“outer” volume, within which all anode EL pixels of a track must be contained, and a slightly

smaller “inner” volume, within which the stop position must lie. The outer volume nearly

fills the entire TPC drift region, rejecting only pixel islands that include an edge cathode,
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anode, or 1.1-mm drift unit — i.e., the outermost pixels of the drift region. The x̃-limits used

for the outer fiducial cut are based on the cathode pixels with ỹmin
Bragg − 1 ≤ ỹ ≤ ỹmax

Bragg + 1;

this is illustrated in Fig. 5.2d by the box in the upper panel of Fig. 5.2d. The inner volume

is nested within the outer, with each bound smaller by 4 mm in x and z (1 unit in each of

x̃ and z̃) and 5.5 mm in y (5 units of ỹ). Muons stopped within the inner volume are more

than 6 mm away from the bounds of the TPC drift region and even further from any Z > 1

material.

The purpose of two fiducial volumes, with the looser one applied to the EL pixels, is to

avoid a time-dependent track acceptance in the following situation: 1) a muon stops near

the boundary of the inner fiducial volume, 2) some time later the muon decays, and 3) the

electron produces a knock-on electron that is detected as an EL pixel included in the pixel

island, extending the island outside the fiducial cut. These knock-on or delta electrons are

discussed further in Chapter 6. It could be argued, in principle, that the outer fiducial

volume in the y-dimension should be brought one or two pixels further from the bounds to

perhaps catch more µ+ p scatter events (see Sec. 6.4); in practice, however, the cut appears

to be adequate as will be demonstrated by the consistency studies of Chapter 6.

5.2 Electron Definition

In the ideal case, a decay electron is detected in one channel of each plane of the tracking

chambers (ePCs) and and by each photomultiplier channel of a segment of the scintillator

hodoscope (eSC), and no signals are present on any other channel until the next electron,

well-separated in time, is detected. An example electron trajectory through the detector

is shown in the detector diagram Fig. 4.1, which gives the name of each particle detector

in MuCap. The analysis of the ideal case would form an electron object simply by finding

time-coincidences between all detector planes. In practice it is more complicated because

a single particle can create signals on more than one wire in an ePC plane, or it can fail

to produce a signal on some planes. Ambiguities in the case of multiple signals in a single

detector, such as from a cosmic particle traversing the detector at the same time as the decay

electron, require making a choice of which hit on one plane to pair with which in the other.

The details of the electron analysis are not necessary to understand the discussion of

systematic effects in Chapter 6. It is sufficient to understand that choices are made of how

to define an electron event, and some variations of these choices are executed in parallel.

Different versions of the electron objects can be used to construct the muon lifetime his-
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tograms, testing the effect of the choice of electron definition on the measured lifetime. The

algorithms used by the analysis to form electron objects are covered in Appendix C.

5.3 Lifetime Fit Method

Lifetime spectra are fit with an exponential plus flat background,

f(t) = Nλwe−λt +B, (5.9)

where w is fixed to the lifetime histogram bin width of 40 ns, and N , λ, and B are fit

parameters. Unless otherwise noted, the lifetime spectra with complete electron detector

tracking, requiring an OR of the cathodes in each ePC, is used. The standard fit range is

100 ns to 24000 ns. Considering the binning phase of the lifetime spectra, the effective fit

range is 120 ns to 24000 ns after the muon stop.

Some of the lifetime histograms are filled requiring only one electron in the range −10 µs

to 24.5 µs. In addition, for these “1e” spectra an e-detector ambiguity (flagged in the raw

data analysis stage) within this gate also vetos the event. Bin errors are corrected for double

counting in the flat background due to throughgoing particles (see Section 6.1), except in the

case of “1 electron gated” spectra, which exclude double counting events by construction.
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Chapter 6

Systematic Effects

An advantage of the MuCap experiment over previous measurements of ordinary muon

capture in hydrogen is demonstrated by the generally model-independent evaluation of the

small systematic corrections, and by the availability of numerous unbiased cross checks of

the lifetime result. Required systematics corrections are small in part because of the low

background of Z > 1 capture events, either from impurities within the hydrogen gas itself,

from µp diffusion of muons stopped near wall materials, or from transfer to deuterium

and subsequent diffusion into wall materials. Selecting only one muon at a time (“pileup

protection”), which is enabled by the muon entrance counters, avoids distortions to the

lifetime spectrum that would otherwise occur due to electron detector dead times and muon

tracking ambiguities in the time projection chamber (TPC).

Many cross checks of the lifetime result are possible because data from each detector were

continuously, independently recorded. The electron definition, for example, can be made

more or less strict by the number of electron detector planes required. Care is required in

the analysis of the electron proportional chambers because of, e.g., their slow response or

the possibility of electronic pickup by the sensitive preamplifiers. The wire chambers can be

entirely removed from the electron definition, retaining only the fast scintillators, and the

lifetime result can be compared to that when all planes are included.

The studies presented in this chapter are data-driven whenever possible. A parameter

in the analysis is varied, and the effect on the (inverse) lifetime λ is observed. If λ exhibits

linear behaviour with the variations in a way that is understood, then a systematic correction

∆λ(sys) is applied to λ. The statistical uncertainty in λ of σstat = 12 s−1 should be compared

to each ∆λ(sys). Effects leading to a correction much smaller than σstat can be neglected, and

non-negligible but small corrections may be adequately covered by assigning a systematic

uncertainty to an estimated upper bound of the effect.
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6.1 Doubly-Counted Background Events

Particles that traverse the electron detector, starting from external sources, can lead to

double counting in the backgrounds of lifetime spectra. Figure 6.1 illustrates a throughgoing

track, and figure 6.2 shows evidence of these in the data. As will be demonstrated, the

φ1

φ2

ePC2

ePC1
x

y

Figure 6.1: Beam-view diagram of φ of electron track. Time-coincident electron tracks with
|φ1 − φ2| > 2.6 are considered throughgoing tracks.

el1
φ0 1 2 3 4 5 6

el
1

φ
 -

 
el

2
φ

-3

-2

-1

0

1

2

3

1

10

210

3
10

410

track1
φ Vs. 

track1
φ - 

track2
φ

pass12 el1
φ - 

el2
φ-3 -2 -1 0 1 2 3

410

5
10

6
10

track1
φ - 

track2
φ

pass12 el1
φ0 1 2 3 4 5 60

5000

10000

15000

20000

25000

30000

35000

40000

) >= 2.60
track1

φ - 
track2

φ for Abs(
track1

φ

pass12

Figure 6.2: Relative angle in the (x, y)-plane of time-coincident e-detector tracks, 120 mm
impact parameter cut with the muon stop location. Left: ∆φ vs. φ of one of the tracks;
Middle: projection of the leftmost histogram onto the ∆φ axis; Right: projection of the
leftmost histogram onto the φ axis for |∆φ| ≥ 2.6. Time-coincident electron tracks with
|∆φ| > 2.6 are considered throughgoing tracks.

effect of double counting on the lifetime result appears to be minimal, ≈ 0.4 s−1. It will

also be shown that we can attribute approximately half of the flat background to doubly-
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counted, throughgoing tracks, regardless of whether or not a 120 mm impact parameter cut

is imposed.

The calculation of how to correct the bin errors for double counting in the flat background

begins by defining a given bin as composed of signal S and background B. Here, B comprises

contributions from particles that are doubly-counted Bdouble and singly-counted Bsingle. If

each particle were counted only once, instead ofB = Bsingle+Bdouble, we would haveBcorrect =

Bsingle+Bdouble/2. If uncorrected, the error of B is taken to be the usual σB =
√
B. However,

the single and double components should be considered separately and their errors added in

quadrature:

σB,single =
√
Bsingle,

σB,double = 2
√
Bdouble/2 =

√
2Bdouble,

σB =
√
σ2

B,single + σ2
B,double =

√
Bsingle + 2Bdouble.

The last equation, for the corrected error of B, can be rewritten in terms of the fraction of

the flat background due to doubly-counted particles, m = Bdouble/B:

σB =
√
B +mB =

√
(1 +m)B. (6.1)

The total error for a given histogram bin with contents C is σC =
√
σ2

B + σ2
S. Rewriting

S = C −B and some substitutions gives:

σC =
√

(1 +m)B + C −B =
√
C +mB. (6.2)
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Figure 6.3: Spectra of Throughgoing Tracks Study, 120 mm Impact Parameter Cut. Muons
are stopped within the TPC fiducial volume; electrons are fully tracked (eSC×ePC1×ePC2);
and a 120 mm impact parameter cut is imposed.
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Bin N λ [s−1] B/N χ2/DOF

all e 1.603× 109 455430.0± 12.2 1.344× 10−6 1.05± 0.06
T-coinc. e 2.474× 107 455405.0± 109.1 4.832× 10−5 1.84± 0.06
T-coinc. e and |φ2 − φ1| > 2.6 2.015× 104 506885.4± 21368.2 5.749× 10−2 1.83± 0.06
T-coinc. e and |φ2 − φ1| ≤ 2.6 2.472× 107 455337.9± 98.0 1.371× 10−6 1.99± 0.06
all e, errs. adjusted, m = 0.54 1.603× 109 455429.6± 12.2 1.344× 10−6 0.97± 0.06

Table 6.1: Fits to spectra of throughgoing tracks study, 120 mm impact parameter cut.
The fit function is y = Nwλe−λt + B, where w is the (fixed) bin width of 40 ns; the fit
range is 0.1 µs to 24 µs. Muons are stopped within the TPC fiducial volume; electrons are
fully tracked (eSC×ePC1×ePC2); and a 120 mm impact parameter vertex cut is imposed.
“T-coinc. e” means time-coincident electron tracks. The fit of the last row is of the lifetime
spectrum after correcting bin errors by the procedure outlined in this section.

The procedure used to correct the bin errors of a given lifetime spectrum, for example

the black spectrum of figure 6.3, is the following:

1. Under the same conditions as the lifetime spectrum, fill a similar histogram selecting

only electron tracks that are time coincident with another track, and have |φ1− φ2| >
2.6. This is the blue spectrum in figure 6.3.

2. Fit both spectra (the original and the “cosmics”), and take the ratio of the B-terms

to find m, m = Bcosmics/Ball. Table 6.1, rows 1 and 3 show these fits, and we see that

m ≈ 0.5.

3. For each bin of the lifetime spectrum, recalculate the errors according to equation 6.2.

4. Fit the spectrum again using the corrected bin errors. Results for the example are

shown in the last row of table 6.1 and should be compared to the first row, which is

the fit with uncorrected bin errors.

Fits to spectra as described by the above procedure are shown in table 6.1 for the lifetime

spectra having a 120 mm impact parameter cut; it is observed that about half of the back-

ground is composed of doubly-counted events. The same procedure was also applied to the

spectra having no impact parameter cut. In both cases, and in spite of quite different back-

ground levels (∼ 5 times larger for the no-cut spectrum), the fraction of the background due

to throughgoing tracks is m ≈ 0.5. Comparing the spectrum of all time-coincident electrons

with the spectrum of time-coincident, φ-opposite electrons shows that the flat backgound of

the former is almost entirely accounted for by the latter.
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6.2 Entrance Counter Inefficiency

Entrance counter inefficiencies come in two varieties: time dependent, especially due to the

MuSC dead time, and time independent, i.e., uncorrelated to a given muon entrance. The

effects of each type are examined in turn.

6.2.1 Time-Dependent Inefficiency

The important inefficiency time structure is that due to the 10-ns dead time of the MuSC.

If two muons arrive simultaneously and within the spatial pair resolution of the MuPC, only

one signal will be detected. If one of the muons further goes on to stop in the TPC, while

the other stops in some Z > 1 material, a decay electron from the latter may be detected

and associated with the former, good muon stop. A distortion of the lifetime spectrum can

also be caused by the “wrong electron” effect, in which one muon sets the entrance time

tµ, and the time t′e of an electron from an unobserved muon entrance is associated with the

entrance at tµ. Here, the “wrong electron” effect is not expected to be a problem, because

1) it shifts the lifetime spectrum of some muon decay events to the right by up to the dead

time, and 2) the dead time is shorter than the 120-ns start time of lifetime fits.

To investigate the overall effect of the MuSC dead time on the lifetime measurement,

the artificial dead time (ADT) was increased, from the standard TADT = 10 ns, to 30 ns,

60 ns, 100 ns, and 150 ns. The rest of the analysis was run as usual, including the MuPC

treatment, and lifetime spectra were created for the different MuSC ADTs. From the fit

results λfit(TADT) of these spectra the nominal λfit based on the best (10 ns) ADT was

subtracted, generating a set of lifetime deviations ∆λfit(TADT) attributed to the increase in

the dead time. Figure 6.4 shows ∆λfit(TADT) plotted against TADT, revealing a monotonically

increasing λfit as TADT increases. Two sets of points are plotted: the blue circles are from

fits to the usual lifetime spectra in which the electron track is required to point back at

the muon stop position to within a 120-mm impact parameter; the red triangles are for the

spectra of all electrons regardless of their impact parameter with the muon stop position.

The reduced sensitivity of the 120-mm-impact-parameter-cut lifetime spectrum to increases

in artificial deadtime is consistent with the expectation that the vertex cut rejects many of

the electrons from bad muon stops.

The observed linear dependence of ∆λfit on TADT is also expected, since the number per

muon entrance of undetected-pileup (“sneaky”) muons that enter within the ADT interval

of another muon is Nsneaky = RbeamTADT, where Rbeam is the (constant) beam rate. We
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Figure 6.4: Lifetime vs. MuSC Artificial Deadtime setting, with and without the muon-
electron vertex cut. The rates ∆λfit are with respect to λfit of the spectrum with the standard
(10 ns) MuSC artificial dead time and the specified muon-electron vertex cut. The lines
through the data are linear fits based on equal weighting of each point for a given vertex
cut.

could go further here with some order-of-magnitude estimates. The difference in the number

of sneaky muons, when the dead time is 100 ns instead of 10 ns, is ∆Nsneaky ≈ 20000 ×
90 × 10−9 = 1.8 × 10−3 for a 20 kHz beam, for which ∆λ(b < 120 mm) = 0.7 s−1, and

∆λ(b < ∞) = 2.2 s−1. The effect on the lifetime for the no-impact-parameter-cut case is

tiny, ∼ 4 ppm, and three times smaller for the 120-mm-cut case. We could estimate 35%

of Nsneaky stop outside of the TPC fiducial volume, leaving ∼ 6× 10−4 that are potentially

“dangerous.” Now the MuPC recovery fraction must be considered: perhaps ≈ 95–98% of

the sneaky muons will be spatially separated from the first muon and be detected by one of

the MuPC planes. A few times 10−5 remain, which must collectively have λ ∼ 10% higher

than the good stops. Many could be rejected by the e-detector acceptance even if no explicit

cut is made, and many of those that stop in high-Z material like iron will disappear before

the 120-ns start time of the lifetime fits. A type of elemental analysis could be performed

by including high-Z lifetimes in the model function and fitting the difference of the standard

lifetime spectrum from the spectrum with long ADT. In the end, however, it is not necessary

to understand this type of undetected pileup further, because a linear extrapolation of λfit for

the standard lifetime spectrum (120-mm impact parameter cut, TADT = 10 ns) to the ideal

case of TADT = 0 implies a systematic correction of ∆λ ≈ −0.06 s−1, completely negligible.

A similar study was carried out in which the MuPC per-wire dead time was varied from

its standard setting of 650 ns to 300 ns and and to 1500 ns. The effects on the lifetime were
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minimal and consistent with statistically allowed deviations.

6.2.2 Time-Independent Inefficiency

In the following discussion, “time-independent inefficiency of entrance pileup protection”

refers to the entrance-time-independent probability κ of an undetected (“sneaky”) muon

entrance within the ±25-µs pileup-protection gate of an apparently isolated muon entrance.

For pileup protection with only the MuSC detector, this type of inefficiency varied by orders

of magnitude throughout the 2004 experimental run period (see Fig. 5.1). Pileup protection

with the logical “or” of all entrance counters has much lower inefficiency, leading to a very

small effect in the observed lifetime.

Time-independent inefficiency of the entrance detectors results in a non-flat background

in the lifetime spectrum in the following way:

1. A muon entrance is detected at time tµ, defining a region of interest (ROI), and more

importantly a fiducial volume in the TPC equivalent to a coincidence time interval

of approximately 2 < tTPC − tµ < 21 µs, where tTPC is the absolute time the pixel

identified as the stop position is detected by the wires of the TPC.

2. Muon entrances are uncorrelated to each other (neglecting the ≈ 50 MHz beam mi-

crostructure), so an additional muon entrance that goes completely undetected (a

“sneaky” muon) is not dangerous regardless of whether or not its decay electron is

detected. The problem is rather that the probability that the sneaky muon stops in

the TPC, with a stop pixel detection time t′TPC that satisfies 2 < t′TPC − tµ < 21 µs,

depends on when the sneaky muon enters with respect to tµ; there is a time-dependent

acceptance of these background decay events.

The acceptance probability ε of the sneaky muon can be written in terms of the distribution

Fdrift(tTPC − tµ) of stop times tTPC for muons that enter at tµ, and the fiducial cut bounds

Tmin
fid ≈ 2 µs, Tmax

fid ≈ 21 µs:

ε(t′µ − tµ) =
∫ ∞

−∞
dt′TPCFdrift(t

′
TPC − t′µ)

×Θ(t′TPC − tµ − Tmin
fid )Θ(Tmax

fid − (t′TPC − tµ)), (6.3)

where the Θ(x) = 1 if x > 1 and zero otherwise. The contribution to the background of the
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Figure 6.5: Time-dependent acceptance ε(t′µ − tµ) (green line) of a sneaky muon allowed
by time-independent pileup-protection inefficiency, given a uniform drift-time distribution
Fdrift(tTPC − tµ) (red line) and application of Eq. 6.3.

lifetime spectrum if the electron of the sneaky muon is detected is then

fBG(t′e − tµ) =
∫ ∞

−∞
dt′µε(t

′
µ − tµ)λe−λ(t′e−t′µ)Θ(t′e − t′µ). (6.4)

This leads to a slow component in the lifetime spectrum with characteristic time similar

to the maximum TPC drift-time. An example of Eq. 6.3 applied to a uniform drift-time

distribution is shown in Fig 6.5. Another way undetected pileup can distort the lifetime

spectrum is if the sneaky muon “approves” a wall stop by providing the muon stop signature

in the TPC.

The actual effect on the lifetime is observed in a data-driven manner by changing the

fraction of sneaky muons contributing to the lifetime spectrum. Varying the level of entrance

counter inefficiency can be effected by imposing less stringent pileup-protection requirements

than the standard case, which takes an OR of all planes for the highest possible efficiency.

An estimate of the overall pileup protection inefficiency is needed. This is accomplished

by histogramming the differences between the times of muon stop signal arrivals at the TPC’s

MWPC, and the MuSC signal times, i.e, tTPC−tMuSC, where the tTPC are for identified muon

stops. The time difference is normally used to calculate the height y of an event in the TPC

under the assumption it is prompt with the muon entrance. Here we are interested in the

out-of-time or background events — muon stops that could not have occurred at the MuSC

time because they fall outside the drift-time interval. Drift-time histograms under different

levels of pileup protection are displayed in Fig. 6.6b. Overall pileup protection inefficiencies

are estimated as the ratio of the background of TPC drift-time histograms (average bin

content in the range −1.5 µs < tTPC − tMuSC < −0.2 µs) to the correlated part of the drift-

time histograms (average bin content in the range 0 µs < tTPC−tMuSC < 23.0 µs). This ratio
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Figure 6.6: Lifetime and drift-time spectra with different levels of pileup protection. The
legend in (b), which lists the pileup-protection condition, also applies to the spectra in (a).
In both panels the curve with the largest background is for the MuSC-only, which had a
rather high inefficiency of ≈ 10−2 (averaged over the 2004 experimental period). Vertical
lines in (b) indicate the background (left side) and correlated regions of the drift-time plot.

is multiplied by a factor of 2.1 [53], which is a function of the beam rate and the drift-time

interval, to give the time-independent inefficiency κ. The estimate for the inefficiency of the

standard (best) pileup-protection is κ = 3.40× 10−6.

The values of κ under different levels of pileup protection are correlated with the results

of fits to the lifetime spectra (Fig. 6.6a) under the same conditions, and a zero-extrapolation

procedure is suggested. Convenient “calibration” data sets are subsets of the production

(Prod50) data with different κ(MuSC-only). The Prod50 set is divided into four chronolog-

ical subsets of similar statistics. An additional calibration set comprises a period of Prod50

in which κ(MuSC-only) was stable and approximately 10−3. Results are summarized in Ta-

ble 6.2. The calibration values for λfit and κ are from the entire Prod50 set and the Prod50

subsets just described, each with MuSC-only pileup protection (MuPC planes are ignored).

Here, ∆λ and ∆κ are calculated with respect to the standard Prod50 λfit and κ and plotted

in Fig. 6.7, showing a linear relationship over a wide range of ∆κ except for Prod50-4, which

has a very large κ, and Prod50-1, which has a very small κ that may have some background.

The remaining calibration groups suggest a correction to λMuCap of ∆λκ ≈ +0.8 s−1. No

correction is applied, but the possibility of an offset in the estimate for κ is conservatively

covered by assigning a systematic uncertainty of ∆λκ = 0 ± 3 s−1 for entrance counter

inefficiency.
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Calib. ∆λ/∆κ Correctiona Best κ
Group κCalib (ppm) ∆λ (s−1) (s−1/ppm) ∆λ (s−1) (ppm)
All 10792.44± 0.69 −2529.78± 17.18 −0.23± 0.00 0.80± 0.01 3.40± 0.01
1 10.48± 0.04 −58.82± 26.17 −8.30± 3.69 28.20± 12.55 2.45± 0.02
2 290.50± 0.22 −47.78± 25.94 −0.17± 0.09 0.57± 0.31 2.40± 0.02
3 5290.35± 0.94 −1380.42± 26.18 −0.26± 0.00 0.89± 0.02 1.29± 0.02
4 39732.37± 2.73 −7477.92± 29.27 −0.19± 0.00 0.64± 0.00 8.17± 0.04
Set001 1076.57± 0.59 −296.06± 34.23 −0.28± 0.03 0.94± 0.11 2.46± 0.03

aUsing Prod50 overall inefficiency for MuSC+MuPCXorY pileup protection, κ = 3.40± 0.01 ppm

Table 6.2: Results of time-independent pileup protection inefficiency study described in the
text. The change in lifetime ∆λ and the change in pileup protection efficiency ∆κ are with
respect to λfit and κ of the entire Prod50 group under the standard (best) pileup protection
condition. The values in the last column, “Best κ,” demonstrate that the pileup protection
inefficiency is low throughout the experimental run when the MuPCs are included in the
pileup protection.
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Figure 6.7: Change in lifetime ∆λfit vs. change in overall pileup protection inefficiency ∆κ.
∆λfit and ∆κ are with respect to λfit and κ under the standard (best) pileup protection
condition. The line through the data, a linear fit based on equal weighting of each point, is
meant only as a guide.
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Figure 6.8: Displays of muon stops with stray pixels in the same regions of interest. In each
panel, the muon enters from the bottom.

6.3 Delta Electrons in the TPC

Pattern recognition of good muon stops in the TPC must be decay-time independent to

avoid distortion of the lifetime measurement. Potential sources of decay-time dependent

track acceptance, it turns out, are “extra EL” pixels around the muon track pixels. Extra

EL pixels are low-threshold hits in the TPC data, within the same region-of-interest (0 to

25 µs of a muon entrance) as a muon track but not connected to the muon track. Two

examples of muon stops accompanied by extra EL pixels are shown in figure 6.8. Extra EL

pixels are present in approximately 2% of all muon stops and appear throughout the TPC

fiducial region. These extra EL pixels come in clusters of up to five or six hits, the number

of such events dropping exponentially as cluster size increases.

The reason to be concerned with these extra EL pixels is evident in figure 6.9, which

shows the results of lifetime fits to spectra requiring both 1) a particular eSC segment, and

2) no extra EL pixels or one extra EL pixel. There should be no variation beyond statistical

in the fit results versus eSC segment (direction of the electron); yet, a dramatic variation

is observed when selecting either zero or one extra EL pixel. The residuals to the lifetime

fits, displayed in the right panel of the figure, exhibit distortions except in the case of no

cut on extra EL pixels (black points). Not explicitly selecting on the extra EL pixels results

in statistically consistent fits across eSC segments. Thus, we cannot cut an event based on

stray EL pixels in the region of interest. 1

It will be shown in this section that most extra EL pixels are explained by “delta” or

“knock-on” electrons — electrons of the medium to which relatively large amounts of kinetic

1However, as described in section 6.4, a line of extra EL pixels is often the signature of a µ + p scatter
event, which we do want to cut.
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Figure 6.9: Lifetime fits vs. eSC segment, with no requirement on the number of extra EL
pixels (black), with exactly 0 extra EL pixels required (red), and with exactly 1 extra EL
pixel required (blue). Left panel: λfit; the leftmost bin is the fit to the sum over all eSC
segments. Middle panel: zoomed-in version of the left panel. Right panel: fit residuals
(normalized) to the fits of the sum of all eSC segments.

energy were imparted by energetic particles. The energetic particles in this case are the

muon decay electrons. The delta electrons of interest are those with greater than the low-

threshold (EL) setting of the TPC, around 25 keV. Since the probability a delta electron

is produced decreases exponentially as its energy increases, most above-EL-threshold delta

electrons do not have energy much higher than the EL threshold. The range of electrons with

these energies in 10-bar hydrogen is expected to be smaller than the TPC pixel dimensions,

so the full delta-electron energy should be deposited within a single pixel.

The correlation of extra EL pixels with both muon stop position and muon decay time is

apparent in figure 6.10: the positions of extra EL pixels relative to the muon stop position,

that is, ∆z = z(ExtraEL) − z(µ Stop) and similarly for ∆y, are plotted. The left panel

of the figure shows (∆y,∆z) for events with muon decay times tDecay in the early interval

0 ≤ tDecay < 1 µs; the right panel is for later decays, 6 ≤ tDecay < 7 µs. The peak of the

distribution for early decays is near the muon stop position, while that for the late decays

appears to be shifted vertically to a larger y-coordinate. Here we must recall the relation

between the TPC drift time and the determination of the y-coordinate of an event: the y-

coordinate is assigned with the assumption that the ionization source was prompt with the

muon entrance time as detected by the separate entrance counters. If the source is prompt

with the muon entrance time, its y-coordinate is assigned correctly. If the source is delayed

somewhat, its inferred y-coordinate yTPC will be above its actual position yactual, according

to

yTPC − yactual = vdrift∆t, (6.5)
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Figure 6.10: Distribution of delta electrons with respect to the muon stop position. Left:
early muon decays (0 ≤ tDecay < 1 µs). Right: late muon decays (6 ≤ tDecay < 7 µs).

where vdrift is the TPC drift velocity, and ∆t is the difference between the source time and

the muon entrance time. The histograms of figure 6.10 are two in a series for different decay

time intervals. A plot of ∆y of the peak versus average tDecay of the corresponding decay

time interval follows a line with a slope of exactly vdrift, i.e.,

∆ypeak
i = vdrift〈tDecay〉i, (6.6)

where the subscript i labels the decay time interval, and the angle brackets indicate averaging

over the time interval. The shift of the peak position with muon decay time is expected

from applying equation 6.5 to sources of extra EL pixels that are centered on the muon stop

positions and occur at the muon decay times.

Further evidence that the sources of extra EL pixels are delta electrons deposited along

the path of the decay electrons is shown in figure 6.11. The distibutions are for a particular

decay time interval (3 ≤ tDecay < 4 µs) and selecting electrons that are seen by a specific

eSC segment, one at the top of the electron detector (left panel of figure) and the other at

the bottom (right panel). Considering the acceptances of the eSC segments, the shape of

each distribution is expected from signals deposited locally and uniformly along the decay

electron path. A numerical study, in which a simplified detector geometry (approximate

TPC active volume and eSC acceptances) was incorporated, and it was assumed that delta

electrons are deposited with constant probability per unit path length pδ, demonstrated

rough quantitative agreement with observations if pδ ∼ 10−3 cm−1.
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Figure 6.11: Distribution of delta electrons with respect to the muon stop position, cutting
on electrons detected at the top (eSC Segment 1) and bottom (eSC Segment 9) of the electron
detector. The decay times are required to be in the interval 3 ≤ tDecay < 4 µs.

6.4 Muon-Proton Scatters

In a small fraction events, the incident muon scatters significantly off a proton. The proton

recoils, traveling only a short distance (less than the space between TPC anodes) before its

kinetic energy is lost to ionization of the gas. In terms of the resolution of the TPC, all of the

recoil energy is deposited at a single pixel. Meanwhile, the scattered muon continues, possibly

into a wall. The scatter leg of the muon track may escape detection for two reasons: 1) low-

threshold TPC tracks are viewed only in projection onto the yz-plane, so a path straight

into or out of the plane (along an anode) is not recognized as a track; 2) the efficiency of

the TPC varies somewhat with particle direction, generally becoming less efficient for muons

travelling along the drift (±y) direction. Thus, there are events that exhibit lead-up pixels

to a µ + p collision point, and sparse or absent pixels leading away from that point. If

the proton’s recoil energy is above the high TPC threshold, EH pixels will appear at the

end of the lead-up track and be confused with the muon’s Bragg peak. In this way we can

have “fake” muon stop events. These fake stops are particularly dangerous if the muon is

scattered downwards because the muons may stop in the aluminum plate situated just below

the MWPC of the TPC. Simulations have shown, and data analysis confirms (see below),

that most muons scattered in other directions harmlessly stop in the hydrogen before hitting

the pressure vessel wall.

Most of the µ + p scatter events do show signs of the muon scatter leg and can be

identified in the data analysis. Four different types of scatter event signatures are defined,

and an example of each is shown in Fig. 6.12:
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Figure 6.12: Examples of the four types of µ+p→ µ+p scatter event signatures in the TPC
data. In each panel, a muon enters from the bottom and Coulomb scatters off a proton,
leaving a high-threshold signal (blue pixels) deposited by the recoil proton. The muon then
continues to the boundary of the fiducial volume, indicated in panels a, b, and d by the
vertical red line at ≈0.75 µs. The labels under the figures are explained in the text.

• ExtraEL Scatters. These are characterized by at least six extra EL pixels, somewhere

in the region of interest, which fall along a straight line that points to the apparent

Bragg peak. The requirement of at least six extra EL pixles is sufficient to avoid

misidentifying decay-electron-induced delta electrons with this scatter event signature.

• TrackTrack Scatters. In this type of event, an apparently good muon stop has

another muon track (with Bragg peak) pointing back to it. The troubling situation

is when the scatter leg stops outside of the desired fiducial volume, for example near

the wires of the TPC’s MWPC. The length of the scatter leg must be long enough to

avoid confusing this event with a delayed, Z > 1 capture event (see section 6.5).

• Cutoff Scatters. An event of this type has a line of EL pixels, connected to each

other and to the apparent stop position, extending beyond the fake stop position. Here

the length of the scatter leg must be long enough that it could not have been caused

by a delta electron from the muon decay electron.
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Fig. 6.12a) and the direction (upwards or downwards) of the scatter leg.

• MWPC Scatters. This is identified by a prompt (with respect to the muon entrance

time), high-threshold hit in the MWPC region of the TPC. The motivation for this

search is that muons scattered into the MWPC can make a larger signal (relative to the

drift region) because of the effectively shorter drift time within the MWPC, and also

because some of these muons may stop in wires and quickly capture, creating a large

signal. Minor sparking in the MWPC or other noise could conceivably be mistaken for

this type of scatter event, but these are found to be very infrequent.

Events that exhibit at least one of the scatter signatures are tagged and removed from the

final muon lifetime spectrum. Lifetime spectra of these identified scatter events are shown

in Fig. 6.13; the events are divided into those that scatter upwards and those that scatter

downwards. It is found that the lifetime of the upwards scatters is consistent with the lifetime

of the non-scatters. Evidently, the upwards scatters eventually stop in hydrogen and present

no distortion to the desired measurement. The lifetime spectrum of the downwards scatters

reveals quite different behavior: the spectrum is visibly steeper at early times, consistent

with a significant fraction of these muons stopping in the aluminum plate below the TPC.

The removal of all identified scatter events from the standard muon track selection reduces

the statistics by 121 ppm and lowers the final muon disappearance rate, λ−µ , by ∆λobs
sc =

2.5 s−1 (= 5.5 ppm of λ−µ ), about 18% of the final statistical error. This is a small shift of the

lifetime, but one must ask: how many scatter events were missed, and what is their effect
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Figure 6.14: Left: histogram of observed muon track lengths for tracks that start on anodes 6
through 25. Middle: muon kinetic energy at the start of the observed tracks, calculated from
the track lengths of left panel. Right: muon energy loss per track length (dE/dx) at the
start of the observed tracks, calculated from the track lengths of the left panel.

on the result? To answer this question we need to know the efficiency to catch a scatter

event faking a good muon stop, and especially the efficiency to catch those that eventually

stop in wall material. This efficiency was estimated by comparing the observed distibutions

of scatter events to the same produced from simulated muons stopping in hydrogen.

The simulated events were generated with the Monte Carlo software package, SRIM [54],

with the momentum distibution, beam spread, and beam divergence set to closely resemble

these properties observed in the MuCap data. To further connect with reality, the length of

the track leading up to the location of a µ+ p scatter must be set correctly. A scatter event

in which the muon’s energy prior to the collision is too high to leave enough lead-up pixels

for a contiguous and sufficiently long track will not pass the track length cut; it will not be

mistaken for a good muon stop. The maximum muon kinetic energy TEL to leave a continuous

track is estimated from the MuCap data from the observed set of track lengths {Ri} for muon

stops and the analytic range-energy relation (Eq. 3.1 in Chapter 3). The distribution of track

lengths is shown in the left panel of Fig. 6.14. Only tracks entirely contained within the

TPC active volume, that is, not cut off by the boundaries, are histogrammed and used in the

calculation of the TEL distibution (middle panel of Fig. 6.14). Similarly, Eq. 3.2 is applied

to the track lengths to get the ionization energy per unit length dE/dx at the point where

the track becomes contiguous. This is shown in the right panel of Fig. 6.14, and the mean

value of the distribution, multiplied by the TPC anode spacing (4 mm), is an estimate of

the low-threshold (EL) setting of the TPC.

The final requirement to compare simulation with data is knowledge of the TPC’s high-
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Figure 6.15: Total fraction of simulated µ + p scatter events with and without the lead-up
track cut. The fraction observed in MuCap is indicated by the green horizontal line.

threshold (EH) setting, which we need to cut simulated scatter events with recoil energy

below this setting. An independent study based on FADC data has indicated that the EH

threshold was set in the range 80–90 keV [55]. The total scatter fraction in the simulation,

with and without the lead-up track length cut, is shown in figure 6.15 as a function of the

assumed EH threshold setting. Across the entire range of reasonable threshold settings, the

total fraction of scatter events with the lead-up track length cut fall well below the total

fraction observed in the data. It turns out the lead-up track length cut in the simulation is

far too severe: often in the MuCap data, sparse lead-up pixels upstream of the contiguous

part of the track connected to the apparent Bragg peak are enough for a fake stop event to

pass the cut. This was confirmed by examination with an event display of the lead-up pixels

to many typical muon stops.

The distribution of scattering angle θ2 — the angle in the yz plane of the muon track

after the collision — is shown in Fig. 6.16 for scatters identified in the MuCap data and

for the SRIM simulation assuming an EH threshold of 85 keV. Results are displayed for

the simulated muons with and without the lead-up track length cut, and with and without

selection of events in which the scattered muons stop in the aluminum plate. The peaks in

the data at θ2 = ±π is a discretization effect: the θ2-reconstruction resolution is poor for

scatter legs that travel steeply up or down, especially for paths that do not leave the charge-

collection region of a given anode. The θ2-distibutions of data and simulation (without

the lead-up cut) are in rough quantitative agreement, but uncertainty remains in how to

correctly set the lead-up lengths of the simulated muons.

Since the only scatter events that affect the lifetime measurement are those that stop in

wall material, primarily the aluminum plate beneath the TPC, the relevent quantity is the
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Figure 6.16: Angle θ2 of scatter legs of identified µ+p scatter events, compared to simulated
scatter events assuming an EH threshold of 85 keV and with and without setting the track
lengths as described in the text. Note: in the track parameterization, θ2 > 0 for a downwards
scatter.

Standard Relaxed SRIM
Muon Def. Muon Def. SRIM No Length Cut

Total 120.8± 0.2 ppm 166.6± 0.3 ppm 63.8± 0.9 ppm 169.8± 1.5 ppm
Down 73.0± 0.2 ppm 92.6± 0.2 ppm 37.8± 0.7 ppm 94.4± 1.1 ppm
Al [11.0± 1.2 ppm]a [12.6± 1.3 ppm]b 10.7± 0.4 ppm 38.3± 0.7 ppm
0.7 ≤ θ2 ≤ 1.5

Down’ 46.2± 0.1 ppm 48.7± 0.1 ppm 22.2± 0.6 ppm 50.5± 0.8 ppm
Al’ [7.2± 1.0 ppm]c [7.2± 1.0 ppm]d 8.7± 0.3 ppm 28.2± 0.6 ppm

aNZ/NDown = 0.158± 0.015, (1− αZ1) = 0.959± 0.042.
bNZ/NDown = 0.141± 0.014, (1− αZ1) = 0.966± 0.041.
cNZ/NDown′ = 0.160± 0.020, (1− αZ1) = 0.980± 0.052.
dNZ/NDown′ = 0.151± 0.019, (1− αZ1) = 0.974± 0.054.

Table 6.3: Comparison of scatter fractions in Run8 and SRIM (with Erecoil > 85 keV). The
Run8 fraction of stops in aluminum, Xobs

Al , is calculated based on the high-Z lifetime fit to the
downward scatters: Xobs

Al = Xobs
down(1 − αZ1)NZ/N , where Xobs

down is the observed downward
scatter fraction, and αZ1, NZ and N are parameters from the lifetime fit; these parameters
are listed in footnotes to the table.
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fraction Xunobs
Al of aluminum stops present in the final lifetime spectrum after all observed

scatters are removed. The systematic error due to these unobserved aluminum stops is then

estimated by scaling the effect on the lifetime of removing all observed scatters:

∆λunobs
sc ≈ Xunobs

Al

Xobs
Al

∆λobs
sc . (6.7)

The fraction of observed scatters Xobs
Al is estimated by fitting the lifetime spectrum of down-

ward scatters (Fig. 6.13) with a fit function modified to include stops in aluminum and

tungsten (for the MWPC wires):

fwithZ(t) = Nλwe−λt +B +NZw
(
αZ1λWe

−λWt + (1− αZ1)λAle
−λAlt

)
, (6.8)

where w is fixed to the lifetime histogram bin width of 40 ns, and N , λ, and B are the

standard fit parameters. Of the new parameters, the rates will be fixed: λW = 12.76×106 s−1

for the muon inverse lifetime on tungsten (gold has a similar total capture rate), and λAl =

1.157 × 106 s−1 for the muon inverse lifetime on aluminum. In this parameterization, the

fraction of stops in aluminum is given by

Xobs
Al =

NZ

N
(1− αZ1) . (6.9)

The results of this estimate for the fraction of stops in aluminum present in the final lifetime

spectrum is included in the column labeled “Standard Muon Def.” in table 6.3. The next

column, labeled “Relaxed Muon Def.,” gives the scatter fractions based on tracks without

the standard muon definition cut of Eq. 5.7 (the cut of Eq. 5.8 still applies); these can be

compared directly to the SRIM fractions. The last two rows are for a restricted range of

scatter angles in an attempt to enhance the contribution from the aluminum stops, but the

fractions NZ/NDown come out very similarly. Depending on the lead-up cut in the simulation,

it appears we are missing somewhere between zero and about two-thirds of the dangerous

scatters into aluminum.

In the end we assign a systematic error based on a 50% efficiency to catch these events,

i.e., Xunobs
Al /Xobs

Al ≈ 1. Inserting this ratio and ∆λobs
sc = 2.5 s−1 into Eq. 6.7, our estimate for

the systematic error due to µ+ p scatter events faking good stops is δλunobs
sc ≈ 3 s−1, where

the lower-case delta indicates an uncertainty, not a correction to the lifetime. In principle

this is a one-sided uncertainty, 0 ≤ ∆λunobs
sc ≤ 3 s−1; we conservatively make it symmetric

to ease inclusion into the final, overall systematic uncertainty.
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Figure 6.17: Display of a Z > 1 impurity capture event. (a) TDC data. (b) FADC data.

6.5 Elemental Impurities

One of the powerful features of the MuCap experiment is the ability to monitor in situ the

Z > 1 gas impurities. When nuclear muon capture occurs from a µZ atom, a localized,

relatively high-energy signal is deposited in the TPC by the recoiling Z − 1 nucleus. An

event display of a typical Z > 1 capture is shown in Fig. 6.17. The signature of these events

is distinct: a good muon stop is followed by a very-high-threshold (EVH) hit on the same

or adjacent anode (z-dimension) and cathode (x-dimension) as the muon stop. There is the

usual TPC ambiguity between the y-position and timing of a source; here, we assume the

capture occurred also at the same height (y-dimension) as the muon stop. The time delay

tcap between the muon stop and the capture event is simply the difference in signal arrival

times at the MWPC. Normalizing the total number of identified Z > 1 capture events by

the total number of muon stops gives the observed capture yield Y obs
Z , which differs from the

actual yield Y ε=1
Z by the efficiency factor εZ of the capture search, i.e., Y obs

Z = εZY
ε=1
Z .

For low concentrations of Z > 1 impurities, the effect on the overall muon lifetime is

proportional to the impurity capture yield:

∆λZ = βε=1
Z Y ε=1

Z = βobs
Z Y obs

Z , (6.10)
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where βZ is a factor to be determined by either 1) calculation using the full kinetics equations,

giving βε=1
Z , or 2) calibration using an impurity-doped dataset, giving βobs

Z . Application of

βε=1
Z has the disadvantage that the efficiency to observe the capture events in the TPC, εZ ,

must be known to correct the observed yield to the perfect-efficiency case. Instead we use

the second method with the βobs
Z determined from calibration data in which the protium

gas is doped with a specific impurity at greater than 100 times the concentration in the

clean fill. The βobs
Z factor is then simply calculated from the observed change in the muon

disappearance rate in the calibration data compared to the clean (Prod.) data, divided by

the observed change in the Z > 1 capture yield:

βobs
Z =

λCalibZ − λProd

Y CalibZ
Z − Y Prod

Z

. (6.11)

Although the theoretical values βε=1
Z are close to each other for the most common impurities,

carbon, nitrogen, and oxygen (water) (see Section 3.4), the recoil energy spectra may be quite

different; in general the fraction εZ of Z > 1 capture events that make it over the TPC very-

high (EVH) threshold depends on the impurity species. In an ideal calibration, the TPC

gain and threshold are unchanged from the production settings, and the target is doped with

the same impurity species that was present in the clean fill. Technical difficulties prevented

such an ideal situation in the 2004 MuCap run.

Fortunately, we are able to relate the 2004 conditions to calibration data from later

MuCap experimental runs, and an impurity correction can be assigned with a conservative

systematic uncertainty of less than half the statistical error of the final λMuCap result. The

issues are the following:

1. The dominant impurity in the clean fill is not known, but there is circumstantial ev-

idence that it is water. External measurements (gas chromotography) showed very

low levels of the common impurities nitrogen (N2) and oxygen (O2). Water concentra-

tion measurements were attempted with a humidity sensor in an external apparatus,

requiring intermediate storage in a sample volume, but the results are inconclusive.

Water tends to stick to internal surfaces, and equilibrium between outgassing and ab-

sorption in the sample volume must be reached for a reliable humidity measurement.

Installation in 2005 of an inline humidity sensor in the target gas circulation system

confirmed that water is the dominant impurity in the target gas.

2. Calibration data in the 2004 running period were successfully taken only with nitrogen.
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Oxygen doping did not produce useful data because of the high electronegativity of O2:

drift electrons tended to be atomically captured by oxygen atoms before reaching the

MWPC of the TPC, severly attenuating the signals. Water-doping on the ppm level

requires some technical effort to effect an equilibrium condition with target materials,

and this was accomplished in a later MuCap running period (2006) via installation of

a water permeation tube.

3. The high voltage of the TPC was not the same during the calibration runs as during

the production (Prod50) runs. The high voltage of the TPC was reduced by 200 V to

4.8 kV for the nitrogen-doped (CalibN2) data, lowering the MWPC gain by about half.

The water-doped (CalibH2O) data were taken during a different experimental period

(2006) and with a higher TPC voltage of 5.45 kV. An additional nitrogen-doped data

set was also recorded in 2006 at the higher TPC voltage of 5.45 kV. Connection with

the 2004 production data can still be made, however, because discriminator threshold

settings were commensurately changed, such that the energy thresholds for the high

(EH) and very-high (EVH) thresholds were nearly the same for the different data

sets. Here, the Bragg peaks of muon stops were convenient reference sources: the

EVH threshold was in all cases set just above nearly all of the Bragg peaks. We

can be confident that we are integrating over a similar range of recoil energies in the

calibration runs as in the Prod50 runs.

The third issue, the connection of calibration to production data, is the key to an accurate

impurity correction and a continuing point of discussion within the MuCap collaboration.

The final recommendation [56] for the impurity correction to the 2004 data is based on ad-

justing the βobs
O value from the 2006 water-doped data to account for differences in efficiency

εO. This adjustment is estimated by comparing parameters from analyses of the respective

nitrogen-doped data sets of the two running periods. The βobs
O of the water-doped dataset

is scaled by the change in the efficiency εN of nitrogen capture detection:

βobs
O (2004) ≈ βobs

N (2004)

βobs
N (2006)

βobs
O (2006). (6.12)

With βobs
N (2004) = 1.30±0.08 s−1/ppm, βobs

N (2006) = 1.38±0.03 s−1/ppm, and βobs
O (2006) =

1.58± 0.12 s−1/ppm, equation 6.12 gives βobs
O (2004) ≈ 1.49± 0.15 s−1/ppm.

The estimate for βobs
O is further modified by drawing on the results of fits to the lifetime

spectra of the impurity-doped data with the solution ye(t) (Eq. 3.9) to the full kinetics
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equation. In the fit, the lifetime parameters are fixed, and the effective transfer rate λ̃pZ is

allowed to float. The results of the fit can be used to calculate the additional quantity γZ ,

γobs
Z = λ̃obs

pZ /Y
obs
Z . (6.13)

The ratio of βZ and γZ , called RZ in the Kinetics chapter, is particularly interesting because

it is not affected by the efficiency εZ , depending only on the electron time spectrum:

Robs
Z = βobs

Z /γobs
Z = ∆λobs

Z /λ̃obs
pZ . (6.14)

RZ can be directly compared to the theoretical predictions in Table 3.3. Fits to the 2004

nitrogen-doped calibration data show γobs
N (2004) = 5.9 ± 0.3 s−1/ppm. Calculating Robs

N

from this and the similar quantity based on the simple-exponential fit, βobs
N (2004) = 1.30±

0.08 s−1/ppm, gives Robs
N (2004) = 0.220 ± 0.002, in good agreement with the theoretical

prediction of 0.219. Similar fits to the 2006 calibration data find [56] Robs
N (2006) = 0.210±

0.00014 and Robs
O (2006) = 0.269± 0.0024, lower than the theoretical predictions by 5% and

10%, respectively. The latter discrepancy is attributed to a result for ∆λobs
O (2006) that

is lower than expected based on the value for γobs
O (2006). We choose to account for this

by adjusting the βobs
O (2004) from Eq. 6.12 up by 10%. Setting a conservative systematic

uncertainty of 25% results in the slope that will applied to the production data to correct

for oxygen (water) impurities:

βobs
O (2004, adjusted) = 1.65± 0.45 s−1/ppm. (6.15)

In the case of the CalibNat data set, which has a significant deuterium concentration

cd ≈ 120 ppm, further modification of the βobs
Z may be motivated. We can estimate the

fraction of muons that transfer to deuterium as Xd ∼ φcdλpd/λ0, which is about 4% for

the conditions of the CalibNat target. These µd proceed to diffuse cm-scale distances (see

Kinetics chapter). Muons that transfer from µd to µZ and subsequently capture are not

recognized as impurity capture events, since the EVH signal is likely spatially displaced in x

and z. Therefore we see a reduction in the observed yield YZ compared to the case with no

deuterium, but the effect ∆λZ on the lifetime is unchanged. Thus, the βZ from the impurity-

doped calibration data is not entirely appropriate, and should be increased for the CalibNat

Z > 1 correction. A further complication stems from an isotopic effect on the transfer rates

to Z, such that λpZ 6= λdZ . For example, the transfer rate from µd to nitrogen was measured
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Data Set Yield [ppm] αN βN [s−1/ppm] βO [s−1/ppm] ∆λZ [s−1]
Prod50 10.65± 0.08 0.05± 0.05 1.30± 0.08 1.65± 0.45 −17.4± 4.6
CalibN2 726.93± 2.84 1.00± 0.00 1.30± 0.08 1.65± 0.45 −948.1± 56.8
CalibNat 44.13± 0.81 0.50± 0.50 1.57± 0.28 1.65± 0.45 −70.9± 11.9
CalibD2 105.79± 0.70 0.50± 0.50 1.30± 0.08 1.65± 0.45 −156.3± 30.3

Table 6.4: Practical impurity corrections. YZ is the observed Z > 1 capture yield, and αN

is the fraction of the observed yield attributed to captures on nitrogen. βN and βO are the
slopes based on calibration data, and ∆λZ is the resulting correction to be applied to the
listed data set.

to be λdN = 1.45(2)×1011 s−1[57], approximately five times higher than λpN; i.e., muons that

transfer to deuterium (∼ 4% in CalibNat) have an enhanced rate to subsequently transfer

to nitrogen. Therefore, we modify βZ to be used for the CalibNat correction in the following

way:

βobs
Z (CalibNat) ≈ φcdλpd

λ0

λdZ

λpZ

βobs
Z (CalibZ). (6.16)

In the case of nitrogen, βN for CalibNat is increased by ≈ 0.04×5 = 20%. Detailed numerical

studies with the full kinetics equations support this estimate [42]. In the case of oxygen, the

transfer rate from µd (λdO = 6.3±0.5 [41]) is similar to the rate from µp (λpO = 8.5±0.2 [58]),

so no modification of βO is necessary.

The final step to implement the impurity correction is to specify the composition of Z > 1

impurities in the target gas and weight the correction accordingly. The gas chromotography

result of very little nitrogen in the production target is expected to be reliable. We attribute

0 to 10% of the capture yield Y obs
Z in the production data to nitrogen and the remainder

to oxygen (water). Let αN represent the fraction of the yield due to captures on nitrogen.

Then the impurity correction is

∆λZ = − (αNβN + (1− αN)βO) , (6.17)

where the βZ are the values adjusted as described above. The Z > 1 corrections for the

production (Prod50) and other data sets are summarized in Table 6.4.

6.6 Diffusion

The presence of deuterium in the target gas leads to a systematic shift of the lifetime mea-

surement. While the somewhat different capture rate of µd compared to µp is not important
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at MuCap deuterium concentration, the effect of µd diffusion out of µ–e vertex (impact

parameter) cuts, perhaps into wall material, can be severe. Our approach to correct for this

is zero-extrapolation procedure. In addition to the main production data with deuterium-

depleted hydrogen, with cProd
d ∼ 1 ppm, data with higher cd were taken: CalibD with

cCalibD
d ≈ 18 ppm, and CalibNat with cCalibNat

d ≈ 120 ppm. The zero-extrapolation can be

done with either the CalibD or CalibNat data sets, though the latter is favored since the effect

is larger and still sufficiently linear [59]. We define the ratio of deuterium concentrations:

c̃ ≡ ccalibd

cProd
d

, (6.18)

where “calib” is either CalibNat or CalibD. In terms of c̃, the correction to the production

data is

∆λd =
−c̃−1

1− c̃−1
(λcalib − λProd), (6.19)

in which the λ have been corrected for Z > 1 impurities, and the same geometrical cuts have

been applied to both data sets.

The correction ∆λd requires accurate knowledge of the deuterium concentrations in the

production and calibration sets. An external measurement of cd for the production gas was

quoted in Section 4.6.1 of Chapter 4. Given the difficulty of these external measurements

and the strong dependence of ∆λd on which impact parameter cut is applied, a cross check of

the correction is warranted. In fact, the “cross check” that is described below was originally

developed to infer c̃ from the MuCap data without relying on external measurements; it was

only in 2006 that the ETH-Zürich accelerator technique was available to precisely measure

cProd
d . Moreover, the MuCap data-analysis study to find c̃ quantified an additional systematic

effect related to µp diffusion that would have otherwise been neglected.

6.6.1 Data-Analysis Technique to Determine cd

The data-analysis technique begins with a signal y(set)(bcut) intended to be directly propor-

tional to cd of the data set for a given impact parameter cut bcut:

y(set)(bcut) = λ(set)(bcut)− λ(set)(bmax
cut ), (6.20)

where the λ are the fit results to lifetime spectra with the specified impact parameter cut,

and bmax
cut is large. Recall that the µd’s in the MuCap target can diffuse ∼ 10 cm during the
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Figure 6.18: Results of applying the näıve Eq. 6.21 to infer the deuterium concentration
(inverse) ratio c̃−1 from the data. Left: using CalibNat as the calibration data set; Right:
using CalibD2 instead. bmax

cut is set to 150 mm in Eq. 6.20.

muon lifetime (see Fig. 3.7 of Chapter 3). Therefore, we expect a higher λ for smaller bcut

settings, since µd diffusion out of the acceptance region represents an additional muon loss

channel. Assuming scaling by cd, y
(set)(bcut) = c

(set)
d ỹ(bcut) for some cd-independent function

ỹ, and we find

c̃−1 =
yProd(bcut)

ycalib(bcut)
, (6.21)

which, if true, must give the same value for any bcut. The results of applying Eq 6.21 to the

data are shown in Fig. 6.18. Equation 6.21 is clearly not valid. Further studies showed what

appeared to be an anomalous increase in λ by as much as ∼ 1000 s−1 for the smallest bcut

studied (10 mm).

It turns out the additional rate deviation is caused by the following mechanism: the

∼ 1 mm diffusion of µp atoms, combined with the broad spatial resolution function of the

electron detector, causes a few more events to be misreconstructed with impact parameter

b > bcut at later decay times than at early decay times. As a preliminary to the full treatment

worked out in Appendix B, a simpler 1-dimensional argument and numerical demonstration

is presented to explain the issue. Consider an electron-detector resolution function Fres(xe−
xµp), in which xe is the reconstructed location of an electron that was actually emitted from

xµp; then the impact parameter is the difference, b = xe − xµp, and Fres(b) represents the

probability density to reconstruct the event as having impact parameter b. Fres(b) would be

a δ-function at b = 0 if the µp did not move, and the event reconstruction was perfect. In

reality the detector resolution is rather broad, on the order of several centimeters, due to

scattering in the pressure vessel walls and other materials. Let xµp be the actual position of
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the µp with respect to its original stopping location, and let the function Fµp(xµp|t) represent

the distribution of xµp for decays at time t. The observed impact parameter distribution for

decays at t is the convolution of Fµp and Fres:

Fb(b) =
∫ ∞

−∞
Fµp(xµp)Fres(b− xµp)dxµp. (6.22)

In the limit of very early muon decays, the µp atoms have not had time to move: limt→0 Fµp(xµp|t) =

δ(xµp). We can identify the observed impact parameter distribution Fb(b|t < t1), for early

muon decays before time t1, with the resolution function:

Fres(b) = lim
t1→0

Fb(b|t < t1)∫∞
−∞ Fb(b|t < t1)db

. (6.23)

The next steps are to 1) choose a model for Fµp, 2) convolute per Eq. 6.22 Fµp with

the experimentally-determined resolution function (Eq. 6.23), and 3) calculate the relative

change in acceptance of an impact parameter cut, as a function of time, with respect to the

undiffused acceptance. We choose Fµp appropriate for isotropic thermal diffusion,

F ex
µp(xµp) =

1

σµp

√
2π
e−x2

µp/2σ2
µp , (6.24)

where σµp ∝
√
t. For the sake of this 1-dimensional demonstration, we choose a gaussian

with fixed parameters for the detector resolution,

F ex
res(∆x) =

1

σres

√
2π
e−(∆x)2/2σ2

res . (6.25)

The resulting F ex
b (b) are shown in Fig. 6.19a for σres = 15 cm and σµp = 0 mm, 1 mm,

and 2 mm; F ex
b appears very similar F ex

res in all cases, as expected since the former is just a

gaussian with σb =
√
σ2

res + σ2
µp ≈ σres. The acceptance of particular impact parameter cut

bcut is

εbcut =
∫ bcut

0
Fb(b)db. (6.26)

The differences between F ex
b (b|t) and F ex

b (b|0) are shown in Fig. 6.19, illustrating how events

are lost outside of b < bcut for increasing σµp. The relative decrease of εbcut, from changing

σµp from zero to 1 mm, is ∆ε50/ε50 = 2.3 × 10−5 for bcut = 50 mm, and ∆ε10/ε10 = 1.9 ×
10−3 for bcut = 10 mm. Therefore, if during the muon lifetime the µp diffuse a distance

characterized by σµp = 1 mm, the absolute effect on λ in this demonstration is roughly
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Figure 6.19: Plots from the simple numerical demonstration of how a small diffusion, convo-
luted with a broad resolution function, leads to time-dependent acceptance once an impact
parameter cut is imposed. The curves (which overlap) in the left plot are the example impact
parameter distributions F ex

b (b|t) for decays at different times t corresponding to a gaussian
µp distribution spread out by σµp = 0 mm (red), σµp = 1 mm (green), σµp = 2 mm (blue).
The curves on the right are the differences between the diffused distributions F ex

b (b|t) and
the undiffused F ex

b (b|0).

∆λbcut ∼ λ0∆εbcut/εbcut: ∆λ50 ∼ 10 s−1 if bcut = 50 mm, and ∆λ10 ∼ 870 s−1 if bcut = 10 mm.

Even the fairly large impact parameter cut of 50 mm, which accepts 99.9% of the events in

this demonstration, leads to a ∆λ similar to the statistical precision of the real data.

The full calculation in terms of the (effectively) 2-dimensional electron-tracking geometry

and actual impact parameter distributions is explained in detail in Appendix B. The cal-

culation is model independent until a specific µp diffusion distribution is introduced, which

depends on the single free parameter k in σµp = k
√
t of a gaussian distribution. The lifetime

effect ∆λk is based on the time-dependent acceptance ε(t), for given bcut and k, and a first

moment integral over the muon decay exponential. The “diffusion parameter” k is fixed by

requiring consistency of c̃−1 (Eq. 6.21) vs. bcut, after µp diffusion is accounted for in y(set).

We write

y(set)(bcut) = y
(set)
d (bcut) + yp(bcut), (6.27)

where yd is the contribution from the presence of deuterium and yp is due to µp diffusion:

y
(set)
d (bcut) = ∆λd(bcut)−∆λd(b

max
cut ), (6.28)

y(set)
p (bcut) = ∆λk(bcut)−∆λk(b

max
cut ). (6.29)

A convenient modification is to work in terms of non-overlapping impact parameter interval
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Figure 6.20: Left: Rate deviations y(set)(bcut1, bcut2) of impact parameter “annulus” cuts
with respect to the 150 mm “disc” cut. The impact parameter annulus cuts are indicated
on the x-axis: the lower edge of a bin is bcut1, and the upper edge is bcut2. Right: observed
impact parameter distribution Fb(b) (blue), and the same divided by a phase-space factor
(red, arbitrarily scaled).

cuts, or “annuli”, defined by bcut1 and bcut2: an event is accepted only if bcut1 ≤ b < bcut2,

i.e., the only difference is now we are specifying a lower bound on b. The rate deviations in

this case are defined as

y(set)(bcut1, bcut2) = λ(set)(bcut1, bcut2)− λ(set)(0, bmax
cut ), (6.30)

and the arguments in the expressions for yd and yp are similarly modified. Figure 6.20a

shows the results of Eq. 6.30 applied to actual data for the annuli bcut2 = bcut1 + 10 mm,

for bcut1 = 0, 10, 20, · · · , 140 mm. yp is calculated for each of these annuli, and we have the

desired signal

y
(set)
d (bcut1, bcut2) = y(set)(bcut1, bcut2)− yp(bcut1, bcut2). (6.31)

Note that yp(bcut1, bcut2) is the same for all data sets, since it depends only on the impact

parameter distribution (Fig. 6.20b), which is nearly the same across data sets. In practice,

the deuterium signal is large enough in the CalibNat set that the yp correction is only

important in the Prod set, but we apply it to both just the same. Finally, we calculate the

cd ratio,

c̃−1(bcut1, bcut2) =
yProd

d (bcut1, bcut2)

ycalib
d (bcut1, bcut2)

. (6.32)

The uncertainties of y
(set)
d (for a particular data set) are still not completely independent

because of correlations via the common reference rate λ(set)(0, bmax
cut ), but the uncertainties of
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Figure 6.21: Left: observed Prod50 rate deviations y(bcut1, bcut2) (black points, same as the
black points in Fig. 6.20:left); calculated effect yp(bcut1, bcut2) due to µp diffusion (green
points); and the differences yd(bcut1, bcut2) between the black and green points attributed to
µd (red points). Right: Prod50-to-CalibNat c̃−1(bcut1, bcut2) after subtracting the effects of
µp diffusion. The model parameter k was varied to minimize χ2 of the constant fit (red line
in figure) to c̃−1 of the first ten annulus cuts.

λ(set)(bcut1, bcut2) are much larger than that of the reference rate. It is therefore reasonable to

consider the c̃−1 determined from non-overlapping annuli as statistically independent, which

facilitates a χ2 check of consistency.

The figure-of-merit, χ2 of a constant fit across determinations of c̃−1 from different annuli

cuts, is used to set an optimal value for k, the only free parameter in the calculation. The

calibration set can be either CalibNat or CalibD2. The “signal” yProd50 from the production

data is shown in Fig. 6.21a, along with yp calculated from the optimal k, and the signal

yProd50
d attributed to deuterium. The fit across c̃−1(bcut1, bcut2) with the optimal k is shown

in Fig. 6.21b. The χ2 vs. k of such fits is well-behaved over a wide range of k, and the

optimal value was found with standard MINUIT subroutines. Results using the two different

calibration sets, and even using CalibD as the “Prod” set, are in Table 6.5. The value

and error for k indicated in the table are as reported by MINUIT (MIGRAD), where the

minimization is on the χ2 of the constant fit, and c̃−1 in the table is the value from the

same constant fit. This data-analysis technique is only sensitive to deuterium ratios, and

this is all that is required for the zero-extrapolation. For the sake of comparison with the

external cd measurements of the Prod gas, this quantity implied by c̃−1 and the externally-

measured ccalibd are shown in the table and found to be consistent with the external ETH-

Zürich measurement of cProd
d = 1.44 ± 0.13 ppm. The external measurement of cCalibD

d was

indirect from volumetric considerations (natural hydrogen was mixed into the protium), and
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Data Sets Fitted c̃−1 χ2/NDF ccalib (Meas.) cprod = c̃−1ccalib

Prod50/CalibNat 0.0125± 0.0010 10.5/9 122.2 ppm 1.531± 0.124 ppm
Prod50/CalibD2 0.0923± 0.0078 10.0/9 17.8 ppm 1.638± 0.139 ppm
CalibD2/CalibNat 0.1341± 0.0030 8.9/9 122.2 ppm 16.386± 0.361 ppm
µp Diffusion Parameter k = 0.4909± 0.0072 mm/

√
µs

Table 6.5: Results of constant fits as in fig. 6.21b are shown in columns 2 and 3. In Column 4,
ccalib
d , the values are from an external measurements of the calibration gas. Column 5 is the

deuterium concentration of the production gas (or CalibD2 gas, in the last row) derived from
the columns 2 and 4 by the formula indicated in the column label.

the reported value of 17.8 ppm may have a significant error. As stated previously, we prefer

CalibNat as the calibration set because of the larger deuterium signal compared to CalibD;

also, a much higher impurity capture yield was observed in CalibD than CalibNat, so the

∆λZ of the former is substantial.

The agreement between the data-analysis technique and external measurements means

we can use either in the zero-extrapolation, and the calculated correction will be the same

within its reported uncertainty. An advantage of the data-analysis technique, which could

be considered an in situ measurement of cProd
d , is that cProd

d can be tracked thoughout the

running period by dividing the data into chronological subsets. The external measurement

reports only cd at the beginning of the running period, when the gas sample was taken. In

the course of the experiment more protium was produced from the same deuterium-depleted

water to replace target hydrogen removed, e.g., for external Z > 1 impurity analysis. It

is well known that electrolysis of water leads to deuterium enrichment in the remaining

water, so there was some concern that the target gas produced later had a higher deuterium

concentration. As shown in Fig. 6.22, there is no evidence for a large increase in cProd
d during

the data-taking period. Even if there were a change in cProd
d , the c̃−1 result from the data-

analysis technique is the average over exactly the data we would like to correct, and it is

therefore completely appropriate for a linear correction.

6.6.2 Summary of Diffuson Corrections

The correction for deuterium uses the data-analysis result of

cProd
d

cCalibNat
d

= c̃−1 = 0.0125± 0.0010. (6.33)
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Figure 6.22: Prod50/CalibNat Diffusion concentration ratio c̃−1 vs. Prod50 run group. The
runs groups are in chronological order, formed arbitrarily by dividing the data file list evenly
(by number of files) into four groups. The diffusion parameter k is set to the value found
from optimization over all Prod50 data. There was some concern that the cd concentration in
the production gas may have increased in the course of the run when more gas was produced
from the same light water, but no evidence of an increase is observed in this study.

An additional correction ∆λk for µp diffusion is also applied. The yp(bcut) (“disc” cuts)

calculated with the optimal µp diffusion parameter k = 0.4909 ± 0.0072 mm/
√
µs — as

determined from the annulus cuts — is shown in Table 6.6 along with the effect attributed

to µd diffusion. Recall that yp and yd are rate deviations with respect to λ(bmax
cut ), which

itself has offsets due to deuterium and µp diffusion; i.e.,

∆λk(bcut) = ∆λk(b
max
cut ) + yp(bcut). (6.34)

Actually, it is ∆λk(bcut) that was calculated, and ∆λk(b
max
cut ) = 1.4 s−1 was subtracted to

get yp(bcut). We should not forget this offset when reading the µp diffusion correction from

Table 6.6. For an impact parameter cut of 120 mm, the µp diffusion correction is then

∆λk = 3.1± 0.1 s−1. (6.35)

6.6.3 Further Comments

Some notes concerning the reliability of the above calculation of the µp diffusion correction

are listed.

• There is some theoretical preference to using decays starting at the lifetime fit start

time (≈ 100 ns) to construct Fb(b): by this time many of the epithermal µp have ther-
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bcut [mm] y(bcut) [s−1] yp(bcut) [s−1] yd(bcut) [s−1]
10 1115.3± 30.0 972.0± 28.3 143.4± 41.3
20 735.1± 14.4 601.7± 17.5 133.4± 22.7
30 374.3± 9.3 270.4± 8.0 103.8± 12.2
40 191.4± 6.7 118.8± 3.5 72.6± 7.6
50 115.0± 5.2 57.3± 1.7 57.7± 5.5
60 68.9± 4.1 29.7± 0.9 39.2± 4.2
70 39.1± 3.3 16.9± 0.5 22.2± 3.4
80 24.6± 2.7 10.0± 0.3 14.6± 2.7
90 15.9± 2.2 6.3± 0.2 9.5± 2.2
100 10.9± 1.8 4.5± 0.2 6.4± 1.8
110 8.0± 1.4 2.7± 0.1 5.3± 1.4
120 5.4± 1.0 1.7± 0.1 3.6± 1.0
130 3.3± 0.7 1.1± 0.1 2.1± 0.7
140 1.3± 0.4 0.4± 0.1 0.8± 0.4
µp Diffusion Parameter k = 0.4909± 0.0072 mm/

√
µs

∆λk(bmax
cut = 150 mm) = 1.4 s−1

Table 6.6: Contribution to the rate deviation due to an impact parameter disc cut. The
y-column is from Prod50 data, y(bcut) = λ(bcut) − λ(150mm). yp(bcut) is the expected rate
shift due to µp diffusion, where the uncertainties in the values are from the uncertainty in
the diffusion parameter k. yd(bcut) = y(bcut)− yp(bcut) is attributed to µd diffusion.

malized, and the spreading of µp stop position is folded into Fb(b) and automatically

accounted for in the yp calculation. The time acceptance interval should not extend too

late, however, because then Fb would already be somewhat spread by thermal diffusion

and possibly µd diffusion. The Fb(b) used in the calculations of this section is based

on decay times in the interval 100–400 ns. Different decay-time intervals were studied,

and the results for c̃−1 were always within the reported error. As noted in Section B.1,

to a good approximation ∆λk(bcut) depends only on the slope dFb(bcut)/db.

• It is argued in Section B.4 that the derivations of Section B.1 are actually quite general,

in that by using the observed impact parameter distribution, we are already taking

into account the TPC resolution and electron detector resolution asymmetries.

• A possible source of systematic error is from the diffusion model, which was taken to be

thermal diffusion, represented by a gaussian distribution with σ = k
√
t. The average

µp diffusion displacement in 3D at time t is R(t) = 2
√

2/π k
√
t; putting in the value

for the model parameter k gives R(t) = 0.78
√
t. The original MuCap proposal [50]

covers the kinetics of µp diffusion in detail, and in the Appendix 10.2 of the proposal,
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titled “Simple analytical estimation of diffusion,” the following estimation for the mean

diffusion range R is quoted:

R ∼
√
vt

σN
, (6.36)

where v is the mean velocity, σ here is “the transport cross section averaged over the

thermal distribution of the µp atoms and target molecules,” and N is the molecular

density. The proposal further gives numerical values for the parameters in equation 6.36

relevant for MuCap conditions of temperature 300 K and density 0.01 of LN2: v = 0.26

cm/µs, and 1/(σN) = 0.023 cm. With these values, equation 6.36 becomes R ∼ 0.77
√
t

(R in mm and t in µs), in excellent quantitative agreement with R(t) calculated with

the model diffusion used in this note. We can at least conclude that the value of

k = 0.49 mm/
√
µs, necessary to give consistency of c̃−1 with impact parameter cut, is

entirely reasonable.

6.7 Lifetime Fit Consistency Checks

There are many parameters in the analysis that can be varied with the expectation that

the results will not change. Any non-statistical variations in the results must be explained

and possibly promoted to a systematic correction. A few of these consistency checks are

presented in the following subsections.

6.7.1 Lifetime vs. eSC Segment

In this study, lifetime histograms are filled based on which eSC segment (1 – 16) is included

in the electron track. The results {λi
fit}, where i labels the eSC segment, are plotted in

Fig. 6.23; the leftmost point is from the fit to the lifetime spectrum summed over all eSC

segments. The statistical consistency of the λi
fit is demonstrated by the constant fit shown

in Fig. 6.23a.

It is worth mentioning that this study has a special place in the history of the MuCap

analysis, since early results showed deviations of at least three times what is statistically

allowed. This was a puzzle for some time, until it was discovered that delta electrons —

in combination with a fragile muon stop definition of the early analysis versions — were

creating a decay-time-dependent efficiency to accept a muon track. The much more robust

algorithm of the present analysis does not suffer these same distortions, as has been discussed

above.
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Figure 6.23: Lifetime vs. eSC Segment. Segment “0” is the sum over all eSC segments. The
value of a constant p0 fit across the λi

fit, where i labels the eSC segment (1 – 16), is shown
in (a) along with the χ2/Dof of this constant fit.

6.7.2 Lifetime vs. TPC Fiducial Volume

The purpose of this study is to confirm that the standard fiducial volume is sufficiently

far from TPC boundaries. The TPC volume is logically divided into a series of nested

boxes, starting with the largest fiducial volume possible and becoming successively smaller.

The space Vi between each box and the next smaller one is a fiducial volume shell. Since

there is no overlap between different volume shells, the lifetime spectra vs. volume shell are

statistically independent. Fit results are shown in figure 6.24. The standard fiducial volume,

indicated by the vertical green line in the figures, appears to be fine, and a constant fit across

all λfit(Vi) with the standard fiducial volume demonstrates statistical consistency.

6.7.3 Lifetime vs. Muon Track Cut

The purpose of the muon track “head cut,” part of the muon track definition and illustrated

in Fig 5.2b, is to veto tracks that continue beyond an apparent stop point. This cut on the

difference between the most downstream EL pixel and the most downstream EH pixel is set

to 2 anode spacings, or “AnodeMaxEL−AnodeMaxEH ≤ 2.” If not for extraEL pixels from

delta electrons of the Michel electrons, the head cut could be made quite strict, say ≤ 1

to cut scatters but keep events with the Bragg peak just overlapping the next anode. The

head cut of ≤ 2 avoids most vetos on an extraEL included by next-nearest-neighbor pixel

clustering into the muon track. It could be argued to relax the cut to ≤ 3, so events that

have an EL pixel from the Bragg peak extending a bit onto the next anode are not vetoed

by an extraEL pixel at stop anode + 3; however, the combined probability of this event veto
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Figure 6.24: Lifetime vs. TPC Fiducial Volume Shell. The fit parameter in the leftmost
bin is for reference: it is from stops in the standard fiducial volume, which are well away
from the walls. The rest of the fits represent statistically independent data of muon stops in
successively smaller, nested volume shells Vi. The shells are of uniform thickness ≈1.1 mm,
except the volume corresponding to the rightmost bin, which does not have an inner bounding
surface. The sum of all events included in the fits to the right of the vertical green line are
those of the standard UIUC fiducial volume. The result p0 of a constant fit across the
λfit(Vi), for the Vi within the standard fiducial volume, is shown in the figure along with its
χ2/Dof.

is quite small, perhaps 10−4 as will be argued based on the lifetime spectra of this section.

To check for the influence of the head cut on the lifetime, this cut is varied from 0 to up

to 7, and then to ≥ 8; The standard cut of ≤ 2 anodes is included as a reference. Fit results

are in Table 6.7. The effect of relaxing the head cut to ≤ 3 anodes can be estimated from the

table by comparing the parameters for the ≤ 2 anodes head cut to those for the differential

head cut of 3 anodes: N=3/N≤2 ≈ 10−4, ∆λ ≈ (λ=3 − λ≤2)10−4 ≈ 2 Hz. This observed

∆λ > 0 could be from avoiding a time-dependent veto via the more relaxed cut, implying

the standard cut is too strict; another possibility is the relaxed cut allows some µ+p scatter

events into the lifetime spectrum, slightly raising the rate from the more accurate value at

the standard cut. Therefore it seems reasonable to include an entry in the systematic errors

table, called “muon track definition” or the like, of 0± 2 Hz.

6.7.4 Fit Start Time Scan

Varying the time range [tstart, tstop] of the lifetime fits is a good way to check for subtle

distortions the lifetime spectrum that would not be reflected in the χ2 of the fit. For

example, if the singlet-to-triplet hyperfine transition rate λhf of the µp atom were slower

than expected, some triplet µp could still be present beyond the start time of the lifetime fit.
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maxEL - maxEH N λ [s−1] B χ2/DOF

<= 2 anodes 1.603× 109 455430.0± 12.2 2154.9± 5.1 1.05± 0.06
= 0 anodes 1.261× 109 455364.9± 13.7 1695.2± 4.5 1.13± 0.06
= 1 anodes 3.410× 108 455587.0± 26.4 456.4± 2.3 1.20± 0.06
= 2 anodes 9.325× 105 489016.9± 552.4 1.8± 0.1 1.34± 0.06
= 3 anodes 1.941× 105 475516.0± 1178.8 0.4± 0.1 1.07± 0.06
= 4 anodes 2.101× 104 484079.5± 4218.4 0.5± 0.1 0.84± 0.08
= 5 anodes 9.063× 103 494330.9± 7048.5 0.5± 0.1 1.04± 0.08
= 6 anodes 8.048× 103 498180.0± 7574.2 0.6± 0.1 0.99± 0.08
= 7 anodes 5.325× 103 514457.0± 10152.4 0.6± 0.1 0.84± 0.08
> 8 anodes 1.467× 104 477077.7± 5095.7 0.5± 0.1 0.97± 0.08

Table 6.7: Lifetime vs. Track Head Cut. The fit range is 100 to 12000 ns for all fits except the
first three, which have enough statistics that the fit can be done over the full 100 to 24000 ns
range. Bin errors are not increased to account for double counting in the background.

Then there would be some component of the lifetime at early times characterized by rate

λ0 + ΛT, significantly lower than the desired λ0 + ΛS. In this hypothetical case, the result

λfit(tstart) would be larger for later tstart. Another example is the effect of including some

Z > 1 stops in the spectrum, which would tend to go the opposite way as that just discussed:

λfit(tstart) would decrease for later tstart as the Z > 1 component decays away faster than

the singlet µp component. The last example that will be given here is not hypothetical,

and that is the effect of pµp molecular formation. The relative populations of the singlet

µp, ortho and para molecular states shown in the Fig. 3.2 of the Kinetics chapter. The

ortho pµp has a somewhat lower muon capture rate Λom ≈ 3
4
ΛS, and that on the para pµp

is lower still, Λpm ≈ 1
4
ΛS. Quantitative calculations show that molecular formation under

MuCap conditions does not appreciably affect the fit start time scan at the current statistical

precision, and the lifetime should be consistent as tstart is varied. Results of the start time

scan, in which tstop is held fixed at its standard 24 µs and tstart is varied, are shown in

Figure 6.25; the lines in (a) indicate the 1-σ statistically allowed deviation with respect to

the result with the standard fit time range of [0.1, 24.0] µs (leftmost point in the figure).

λfit(tstart) does not vary more than expected.

6.7.5 Fit Stop Time Scans

This study is similar to the start time scan, except here tstart is held fixed and tstop is varied.

Results are shown in Figure 6.26. The interpretation of this study is not as obvious as for

the start time scan, but no problems are evident.
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Figure 6.25: Fit Start Time Scan of the Lifetime Spectrum. The time range of the lifetime
fit is varied, and results are plotted vs. the beginning of the range tstart; the end of the time
range tstop is fixed to 24 µs. The red curves in (a) indicate the statistically allowed (at 1σ)
deviation with respect to the λfit from the standard fit range of 0.1 to 24 µs.
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Figure 6.26: Fit Stop Time Scan of the Lifetime Spectrum. The time range of the lifetime
fit is varied, and results are plotted vs. the end of the range tstop; the beginning of the time
range tstart is fixed to 0.1 µs. The red curves in (a) indicate the statistically allowed (at 1σ)
deviation with respect to λfit from the standard fit range of 0.1 to 24 µs (rightmost point).
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Figure 6.27: Lifetime vs. Prod50 Run Group. The divisions are the Prod50 data set divided
into 96 chronological pieces of approximately equal statistics. A constant fit across all λfit is
shown in (a).

6.7.6 Lifetime vs. Run Group

The Prod50 data set is split into 96 chronological subgroups, each with similar numbers

of µ-e events. Lifetime spectra frome each subgroup are fit, and the results λfit(Gj) and

χ2(Gj)/Dof, where Gj is the jth subgroup, are displayed in Fig. 6.27. The results are found

to be statistically consistent, and a constant fit to the set of λfit(Gj) is shown in the figure.

There is no evidence that a systematic effect is caused by slow changes — such as in ambient

temperature, which affects the density of the hydrogen and therefore the gain of the TPC

— throughout the course of the experimental running period.

6.8 Choice of e-Definition

The final consistency check before unblinding is the lifetime versus choice of electron defini-

tion in the analysis. Possibilities are combinations of the following items in italics.

• Combination of Electron Detector Planes. Three options are studied:

1. eSC. The ePC’s are ignored;

2. CathAND. Full e-detector tracking (eSC, ePC1, and ePC2 coincidence), in

which the anode, inner and outer cathode planes of each ePC are required;

3. CathOR. Full e-detector tracking (eSC, ePC1, and ePC2 coincidence), in which

each ePC hit requires the anode and at least one cathode plane.

• Electron Gating. There are two options:
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1. All Electrons Accepted. Each electron time te enters the lifetime spectrum

after subtraction of each good muon time tµ;

2. One Electron Gated. Only events that have one electron time that satisfies

tµ − 10 µs < te < tµ + 20 µs (“unique” electrons) are filled into the lifetime

spectrum.

• b Cut. b is the distance of closest approach (impact parameter) of an electron tracked

back to the muon stop position. Only µ-e events that satisfy b < bcut, for some

specified bcut, enter the lifetime histogram. This option is not compatible with the

eSC-only specification, since electron tracking requires the ePC’s. Two different impact

parameter cuts are studied:

1. b < 120 mm. This is a loose enough cut that diffusion corrections are not too

big;

2. No b Cut. No explicit cut on b is imposed. The diffusion corrections are smaller,

but the lifetime spectrum has ∼ 5 times the background level as the one subject

to the 120-mm impact parameter cut. Also, it is possible that more Z > 1 stops

are included for example from undetected pileup or µ+ p scatters that fake good

muon stops.

Recall that the b < 120 mm, all-electrons-accepted, CathOR lifetime spectrum is the stan-

dard thus far, used in all the above studies except where noted.

No completely convincing reason has been offered to favor one electron definition over

to the others, but it was agreed upon within the MuCap collaboration to base the final

result for Run8 on the “b < 120 mm”, “All Electrons Accepted” lifetimes, averaging the

“CathOR” and “CathAND” λ’s into a single value, which we will call λMuCap. The choice of

the 120-mm impact parameter cut is due to a preference for the much lower background level

and well-defined bcut, the latter suggested by the diffusion systematics studies. Accepting

all electrons instead of only the single-electron events, one could argue, avoids a (marginal)

loss in statistics. The “one electron gated” requirement leads to the harmless dead time

effect, if it is present, of a background contribution that decays away with the same lifetime

as the desired measurement. No consequences to λfit of electron-detector dead time effects

were found in any case. The original choice in the UIUC analysis to use CathOR e-detector

tracking was motivated by the higher efficiency and reduced dead time response of the over-

all electron detector in this treatment; however, perhaps the CathAND treatment reduces
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the effects of afterpulsing or detector noise. Thus, the prescription set by collaboration is

followed, and the other e-definitions are used to set a conservative “consistency” systematic

uncertainty.

Comparison of the λ’s from the various e-definitions is best performed after diffusion cor-

rections are applied, since the sensitivities to diffusion effects may be explicitly or implicitly

different. The diffusion correction in turn is more accurately calculated after the respective

impurity corrections are added to the Prod50 and CalibNat λfit’s. The results of lifetime

fits, corrected for impurities, extrapolated to zero deuterium concentration, and then with

the µp diffusion effect correction subtracted off, are shown in table 6.8. The remaining

systematic studies — unseen µ + p scatters, muon track definition, and entrance counter

time-independent inefficiency — give uncertainties that will be applied uniformly to all of

the λ’s. Aside from these yet-to-be-applied, small increases in their uncertainties, the values

for the corrected λ’s, in the last column of the table, may now be checked for consistency

with λMuCap.

The sets of events resulting from the different e-definitions overlap each other by at least

77% and as much as ≈ 95%, depending on which sets are compared, so we cannot simply

fit a constant across the λ(eDef.) and expect a meaningful χ2. Differences of the λ(eDef.)

from λMuCap are plotted in Fig. 6.28; the errors indicated are those on λ(eDef.), ignoring

correlations with and the uncertainty of λMuCap. The overlap factors can be calculated

from Nfit’s when one set is an obvious subset of another, such as between the “unique

e” and “all e” sets for the same ePC treatment and bcut, but care must be taken if the

background fractions are significant and very different. The MuCap collaboration opted to

add a conservative systematic uncertainty of ±5 s−1 for “analysis methods,” which covers

most of the observed deviations within this analysis, within the UCB analysis, and between

the two analyses.

6.9 Summary of Internal Systematic Corrections

The systematic errors discussed in this chapter are summarized in Table 6.10. These are

dependent on details of the experiment and are therefore designated “internal” systematic

errors. The final step, before interpreting the result for λ in terms of ΛS, is unblinding

of the clock frequency. The actual clock frequency was 100.001000 MHz, compared to the

frequency assumed in the analysis of exactly 100 MHz. Thus, the final λMuCap is multiplied

by a factor of 1.001 to convert to actual s−1. The final value for λMuCap in terms of actual
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Prod50 Deuterium µp Diffusion
e-Definition λfit + ∆λZ

a Correctionb Correctionc Corrected λ

A
ll

E
le

ct
ro

ns
A

cc
ep

te
d

CathOR
b < 120 mm 455412.2± 13.0 −12.2± 1.8 −3.1± 0.1 455396.8± 13.2

CathAND
b < 120 mm 455405.6± 13.4 −12.0± 1.8 −3.1± 0.1 455390.5± 13.5

CathOR
No b Cut

455397.4± 13.1 −8.1± 1.5 — 455389.3± 13.2

CathAND
No b Cut

455392.8± 13.5 −7.8± 1.6 — 455385.0± 13.6

eSC 455401.8± 13.5 −7.8± 1.6 — 455394.0± 13.6

O
ne

-E
le

ct
ro

n
G

at
ed

CathOR
b < 120 mm 455410.5± 13.4 −12.3± 1.8 −2.5± 0.1 455395.7± 13.5

CathAND
b < 120 mm 455404.6± 13.7 −12.0± 1.8 −2.5± 0.1 455390.2± 13.8

CathOR
No b Cut

455400.2± 13.4 −9.0± 1.6 — 455391.1± 13.5

CathAND
No b Cut

455396.2± 13.7 −8.6± 1.6 — 455387.6± 13.8

eSC 455400.6± 13.0 −8.8± 1.6 — 455391.8± 13.1

aUsing Y (Z, obs) = 10.6 ± 0.08 ppm, βN = 1.30 ± 0.08 s−1/ppm, βO = 1.65 ± 0.45 s−1/ppm, and
α = 0.05± 0.05.

bUsing c̃−1 = 0.0125± 0.0010, and adding 0.50 s−1 to the error on this correction to account for nonlin-
earity at cD = 122 ppm.

cUsing model diffusion parameter k = 0.4909± 0.0072 mm/
√

µs

Table 6.8: Summary of λ results with different electron detector treatments. The complete
Prod50 fit parameters are in table 6.9.
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Figure 6.28: The corrected λ’s from Table 6.8 with λMuCap (the average of the two “all
electrons accepted, b < 120 mm” λ’s) subtracted off.

e-Definition Nfit λfit Bfit XBG χ2/Dof

A
ll

E
le

ct
ro

ns
A

cc
ep

te
d CathOR

b < 120 mm
1.603× 109 455429.6± 12.2 2.154× 103 8.022× 10−4 0.97± 0.06

CathAND
b < 120 mm

1.511× 109 455423.0± 12.6 2.008× 103 7.931× 10−4 0.98± 0.06

CathOR
No b Cut

1.679× 109 455414.8± 12.3 9.921× 103 3.527× 10−3 1.09± 0.06

CathAND
No b Cut

1.581× 109 455410.2± 12.7 9.240× 103 3.488× 10−3 1.08± 0.06

eSC 1.786× 109 455419.2± 12.7 4.765× 104 1.593× 10−2 1.01± 0.06

O
ne

-E
le

ct
ro

n
G

at
ed

CathOR
b < 120 mm

1.454× 109 455427.9± 12.6 2.030× 102 8.336× 10−5 0.97± 0.06

CathAND
b < 120 mm

1.387× 109 455422.0± 12.9 2.436× 102 1.049× 10−4 0.97± 0.06

CathOR
No b Cut

1.499× 109 455417.5± 12.6 1.267× 103 5.044× 10−4 0.96± 0.06

CathAND
No b Cut

1.431× 109 455413.6± 12.9 1.447× 103 6.036× 10−4 0.96± 0.06

eSC 1.703× 109 455418.0± 12.2 8.383× 103 2.938× 10−3 0.89± 0.06

Table 6.9: Parameters from the fits to Prod50 lifetime spectra with different electron detector
treatments. Nfit, λfit and Bfit are the results of the fit with the model function f(t) =
Nwλe−λt + B, where w is the fixed histogram bin width of 40 ns. The total background
fraction XBG is derived from the fit parameters and the number Nbins of histogram bins
included in the fit via XBG = (BfitNbins/w)/Nfit: this is the ratio of the number of events in
the flat background to the number in the lifetime part.
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Source Correction (s−1) Uncertainty (s−1)
Z > 1 impurities (∆λZ) −17.4 4.6
Deuterium (∆λd) −12.1 1.8
µp Diffusion (∆λk) −3.1 0.1
Unseen µ + p scatters (∆λsc) 0.0 3.0
µ stop definition (∆λtr) 0.0 2.0
µ pileup veto inefficiency (∆λκ) 0.0 3.0
Analysis methods (∆λAna) 0.0 5.0
Total −32.6 ±8.4

Table 6.10: Summary of internal experimental corrections to λ.

inverse seconds is presented in Table 7.2 of the next chapter.
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Chapter 7

Results

7.1 ΛS from MuCap λ−µ

After the adjustments described in Chapter 6 for impurities, deuterium, and µp diffusion are

applied, we arrive at an experimental result for the muon disappearance rate λ−µ of negative

muons stopped in hydrogen gas of density φ = 0.0112 and temperature T = 300 K. The

target conditions are such that most muons are prepared in the singlet µp atomic state;

however, the small amount of molecular formation is significant and must be accounted for

to accurately interpret λ−µ in terms of the singlet capture rate ΛS. Fitting the observed µ−

lifetime spectrum with a single-exponential function leads to a result

λ−µ = λ0 + ΛS + ∆λpµp, (7.1)

where the last term represents the effect of molecular formation and λ0 is the muon disap-

pearance rate in the absence of any muon capture.

The calculation of ∆λpµp is described in Chapter 3 and Appendix A. The approach is to

generate a lifetime spectrum using the full kinetics equation, fit a single-exponential model

function, and thus observe a shift of λ−µ from its value in the absence of molecular formation

(λ0 + ΛS) by an amount ∆λpµp. Rates of ortho molecular formation λof and ortho-para

transition λop are set to λof = (2.3± 0.5)× 106 s−1 and λop = (6.9± 4.3)× 104 s−1 to cover

most literature values (see Tables 3.1 and 3.2). The rates Λom and Λpm of muon capture from

the ortho and para molecular states are functions of ΛS; consequently, ∆λpµp depends on ΛS

itself, and there is a slight loss of sensitivity in Eq. 7.1 between ΛS and the observed rate

λ−µ . The reduction in sensitivity can be seen by rearranging Eq. 7.1 and Taylor expanding

∆λpµp about some reasonable value Λ0
S of the singlet capture rate:

ΛS = λ−µ − λ0 −
{

∆λpµp(Λ
0
S) +

∂∆λpµp

∂ΛS

(
ΛS − Λ0

S

)
+ · · ·

}
. (7.2)
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ΛS (s−1) λof (µs−1) λop (µs−1) ∆λpµp

723.00 2.30 0.000 -17.34
723.00 1.80 0.069 -18.35
723.00 2.30 0.069 -23.06
723.00 2.80 0.069 -27.63
723.00 2.30 0.026 -19.71
723.00 2.30 0.069 -23.06
723.00 2.30 0.112 -25.84
703.00 2.30 0.069 -22.41
743.00 2.30 0.069 -23.71

Table 7.1: Corrections for molecular formation for different values of λof and λop. The
variations in the parameters are the recommended 1-σ values, so the error on ∆Λpµp due to
that on λof (λop) can be estimated from rows 2 – 4 (5 – 7). The last two rows can be used
to find the senstivity of the correction on ΛS (i.e., ∂∆Λpµp/∂ΛS).

A fluctuation in (λ−µ − λ0) by an amount δλ produces a change δΛS in the extracted value

of ΛS, with the relation

δΛS ≈
(

1 +
∂∆λpµp

∂ΛS

)−1

δλ. (7.3)

We will account for this by scaling the final uncertainty of ΛS according to Eq. 7.3. Table 7.1

shows ∆λpµp calculated with an array of values for ΛS, λof , and λop. Each molecular rate

parameter is varied by its uncertainty while the other and ΛS are held at their central values.

In that way the uncertainty of ∆λpµp due to that in each molecular parameter is determined.

The partial derivative with respect to ΛS is computed similarly to be ∂∆λpµp

∂ΛS
= −3.2%,

meaning the final ΛS error should be increased by a sensivity factor αsens = (1− 0.032)−1 =

1.034.

We turn now to the value for λ0, the parameter in Eq. 7.1 that represents the µ− decay

rate in the absence of nuclear capture. Assuming CPT invariance of muon decay, and apart

from a small bound-state correction ∆λµp to the decay rate of a µ− in the µp atomic state,

λ0 is equivalent to the free µ+ decay rate λ+
µ ; i.e.,

λ0 = λ+
µ + ∆λµp. (7.4)

The positive muon lifetime τ+
µ = 1/λ+

µ has been measured in several experiments, and the

previous world average τ+
µ = (2.19703 ± 0.00004) × 10−6 s [21] was recently updated to a

value with even higher precision: τ+
µ = (2.197019± 0.000021)× 10−6 s [8].

The last quantity to determine, before extracting the experimental result for ΛS based on

Eqs. 7.1 and 7.4, is ∆λµp. As pointed out by several authors ([7], [60], [61]), the bound-state
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Uncertainty (s−1)
Value (s−1) Stat. Syst.

MuCap λ−µ 455849.1 12.4 8.4
Molecular Formation (λof) Correction 17.3 4.7
Molecular Transitions (λop) Correction 5.7 3.4
Bound State Correction (∆λµp) 12.3
World Average λ+

µ 455162.2 4.4
MuCap ΛS

a 722.2 13.6 10.6

aThe uncertainties are increased by a factor 1.034 to account for the sensitivity of the molecular correction
to ΛS.

Table 7.2: Final determination of ΛS from the UIUC analysis of the MuCap Run8 data.
Uncertainties are divided into statistical (Stat.) and systematic (Syst.) contributions, and
all errors are added in quadrature for the last row.

effect on the muon lifetime may be understood in terms of a few competing contributions:

1) relativistic time dilation of the muon due to its orbital motion; 2) reduction of the phase-

space available to the decay electron because of the initial binding energy (i.e., the muon

is off-shell); and 3) the Coulomb interaction of the final-state electron with the proton,

which may be considered as either increasing the overlap between the muon and electron

wavefunctions, or as a downward shift in the electron’s energy spectrum. In leading order,

the latter two contributions exactly cancel, leaving only the time-dilation effect. The result

for R, the ratio of free to bound (µZ) muon lifetimes, is R = λ0/λ
+
µ = 1 − (Zα)2/2 [7],

where α is the fine structure constant. Including a nuclear recoil correction modifies R by

an additional −0.06(Zα)2mµ/mp [60] (≈ 1% of the leading-order term) and we have (setting

Z = 1):

∆λµp = −
(

1

2
α2 + 0.06α2mµ

mp

)
λ+

µ = −12.3 s−1. (7.5)

The final determination of the singlet capture rate ΛS from the UIUC analysis of MuCap

Run8 (2004) data is summarized in Table 7.2. The recommended value is ΛMucap
S = 722.2±

17.2 s−1, where the statistical and systematic uncertainties are added in quadrature. The

average of this analysis and that of the independent UC-Berkeley analysis is the result

submitted by the MuCap collaboration for publication [15],

ΛMuCap
S = 725.0± 13.7stat ± 10.7syst s−1. (7.6)

The difference between the two analyses is 5 s−1, and as mentioned at the end of Chapter 6, an
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additional conservative systematic error for “analysis methods” is included in λ−µ . This new

measurement of ΛS is more precise than all previous experimental results, and its implications

in terms of the underlying theory are described in the following section.

7.2 Determination of gP

The pseudoscalar coupling gP (q2
OMC) can be calculated from the difference between ΛMuCap

S

and the theoretical prediction ΛTh
S :

gMuCap
P = gTh

P +
∂gp

∂ΛS

(
ΛMuCap

S − ΛTh
S

)
. (7.7)

The average of the two next-to-next-to-leading-order ChPT calculations for the singlet cap-

ture rate [28] [27] quoted in Chapter 2 is (687.4 s−1 + 695 s−1)/2 = 691.2 s−1. Applying

radiative corrections of +2.8% [30] gives ΛTh
S = 710.6 s−1. We use gTh

P = 8.26 [20] and a value

for ∂gP/∂ΛS based on the phenomenological calculation [26] of ΛS. After a small adjustment

to account for the different value of gP used in [26], scaling by radiative corrections gives

∂gP/∂ΛS = −0.065 s. Applying Eq. 7.7, we find the MuCap determination of gP to be

gMuCap
P = 7.3± 1.1. (7.8)

This result is consistent with gTh
P and insensitive to the assumed muon molecular ortho-para

transition rate λop.

A plot of gMuCap
P vs. the assumed value of λop is shown in Figure 7.1, along with gP implied

by other muon capture experiments. Previous determinations [12] of gP from ordinary muon

capture assumed the λop from the earlier experiment by Bardin et al., λEx1
op = (4.1± 1.4)×

104 s−1 [9], notwithstanding the disagreement with the theoretical value λTh
op = (7.1± 1.2)×

104 s−1 [10]. With the more recent experimental result λEx2
op = (11.7± 1.7+0.9

−0.7)× 104 s−1 [11]

in disagreement with both theory and the previous measurement, the ortho para transition

rate must be considered uncertain over much of the range covered by the plot in Fig. 7.1. The

widths of the uncertainty bands of the previous most precise muon capture measurements

(labeled “OMC” and “RMC” in the figure), which used liquid hydrogen targets, are similar

to that of this first result from the MuCap experiment; however, the MuCap result varies

little over the entire range of reasonable λop due to the small amount of molecular formation

in the low-density target. The previous experiment [3] in hydrogen gas, like MuCap, is nearly

insensitive to λop, but its reported uncertainty is more than three times larger. MuCap is the
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Figure 7.1: (from Ref. [15]) Experimental and theoretical determinations of gP , presented
vs. the ortho–para transition rate λop of the pµp molecule, and updated with the new Mu-
Cap result. The most precise previous OMC experiment [5] and the RMC experiment [14]
both depend significantly on the value of λop, which itself is poorly known due to mutually
inconsistent experimental (λEx1

op [9], λEx2
op [11]) and theoretical (λTh

op [10]) results.

first experiment to determine gP both precisely and unambiguously. The disagreement with

the chiral symmetry prediction originally implied by the RMC experiment is not supported.

Updated determinations of gP from previous measurements, following the procedure de-

scribed in Appendix D, are presented in Fig. 7.2. The differences from the gP values reported

in Table II of the 2004 review by Gorringe and Fearing [12] are mainly due to 1) the re-

cent radiative corrections calculation of +2.8% [30], increased from the previous value of

+0.6% [29], and 2) the different central value and much larger uncertainty of the pµp ortho-

para transition rate used in the present analysis, λop = (6.9 ± 4.3) × 104 s−1. For given

values of the kinetic parameters, the value of gP in the theoretical prediction of the cap-

ture rate is adjusted to match the observed capture rate. For each bubble-chamber and

neutron-counting experiment, the capture rates and the average time t1 muons spend in

the hydrogen before counting begins are taken directly from Table II (the column labeled

∆t) of Ref. [12]. The previous experiment employing the lifetime technique, that of Bardin

et al. [5], is updated with the most recent world-average positive muon lifetime [8]. The

new “world-average” gP values shown in the lower part of Fig. 7.2 actually come out less

precise than the present MuCap determination alone because the simple weighted average

of the gP vs. λop plots, which is what the study described in Appendix D uses, results in a
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ChPT

(RMC)

Figure 7.2: Updated experimental determinations of gP from measurements of muon capture
on the proton, using the same pµp molecular trasition rates as in the MuCap analysis, i.e.,
λof = (2.3± 0.5)× 106 s−1 and λop = (6.9± 4.3)× 104 s−1. The values and uncertainties for
gP (plotted, and listed to the right) are based on the gP vs. λop plots shown in Appendix D,
Fig. D.1. As in the review by Gorringe and Fearing [12], the oldest three measurements,
which used bubble chambers, are excluded from the “world average” determinations. The
“old OMC world average” includes Bleser et al. through Bardin et al.; the “new OMC world
average” additionally includes the present MuCap result; and the “new world average”
further includes the Wright et al. radiative muon capture (RMC) determination.

net λop dependence. Unless the inconsistent situation with λop is resolved, the most precise

determination of gP is from the MuCap result unaveraged with previous experiments.
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Appendix A

Full Kinetics Equations

A.1 Solution to Differential Equations

The differential equations can be written in terms of a matrix M and vector ~n as d~n
dt

= M~n,

with

M =


−(λ0 + ΛS + φλpp + λ̃pZ) 0 0 0

φλof −(λ0 + Λom + λop) 0 0

φλpf λop −(λ0 + Λpm) 0

λ̃pZ 0 0 −(λ0 + ΛZ)



~n =


n1

n2

n3

n4

 .

The solution is written symbolically as

~n(t) = AeMt~n(0), (A.1)

where A is a scalar constant and ~n(0) is the initial population distribution. The matrix

exponentiation is effected by first diagonalizing M : M = SLS−1, where the diagonal matrix

L is composed of the eigenvalues of M , and S is constructed with linearly independent

eigenvectors −λi of M .

eMt = eSLS−1t = SeLtS−1 = S


e−λ1t 0 0 0

0 e−λ2t 0 0

0 0 e−λ3t 0

0 0 0 e−λ4t

S
−1
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The eigenvalues of M are

λ1 = λ0 + ΛS + φλpp + λ̃pZ , (A.2)

λ2 = λ0 + Λom + λop, (A.3)

λ3 = λ0 + Λpm, (A.4)

λ4 = λ0 + ΛZ . (A.5)

Equation A.1 is also conveniently solved in Mathematica with the MatrixExp function;

the initial condition ~n(0) = (1, 0, 0, 0)T and A = 1 leads to

n1(t) = b1e
−λ1t (A.6)

n2(t) = b2(e
−λ2t − e−λ1) (A.7)

n3(t) = b3e
−λ2t + b4e

−λ3t + b5e
−λ1t (A.8)

n4(t) = b6(e
−λ4t − e−λ1t), (A.9)

the coefficients bj defined as

b1 = 1, (A.10)

b2 =
φλof

ΛS − Λom − λop + φλpp + λ̃pZ

, (A.11)

b3 =
φλofλop

(Λom + λop − Λpm)(Λom + λop − φλpp − ΛS − λ̃pZ)
, (A.12)

b4 =
(φλofλop + φλpf(Λom + λop − Λpm))

(Λom + λop − Λpm)(φλpp − Λpm + ΛS + λ̃pZ)
, (A.13)

b5 =
φλof(λop − φλpf) + φλpf(Λom + λop − φλpf − ΛS − λ̃pZ)

(−Λom − λop + φλpp + ΛS + λ̃pZ)(φλpp − Λpm + ΛS + λ̃pZ)
, (A.14)

b6 =
λ̃pZ

φλpp + ΛS − ΛZ + λ̃pZ

. (A.15)

Muons decay from each state with rate λ0, so the electron appearance rate at time t is

λ0(n1(t) + n2(t) + n3(t) + n4(t)). Including a factor N for the total number of µ–e events

and adding a constant background term B, the electron time spectrum y(t) is

ye(t) = Nλ0(c1e
−λ1t + c2e

−λ2t + c3e
−λ3t + c4e

−λ4t) +B, (A.16)
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the coefficients ci given by

c1 = 1− φλof

ΛS − Λom − λop + φλpp + λ̃pZ

− λ̃pZ

φλpp + ΛS − ΛZ + λ̃pZ

(A.17)

+
φλof(λop − φλpf) + φλpf(Λom + λop − φλpf − ΛS − λ̃pZ)

(ΛS − Λom − λop + φλpp + λ̃pZ)(φλpp − Λpm + ΛS + λ̃pZ)
, (A.18)

c2 =
φλof

−Λom − λop + φλpp + ΛS + λ̃pZ

(A.19)

+
φλofλop

(Λom + λop − Λpm)(Λom + λop − φλpp − ΛS − λ̃pZ)
, (A.20)

c3 =
(φλofλop + φλpf(Λom + λop − Λpm))

(Λom + λop − Λpm)(φλpp − Λpm + ΛS + λ̃pZ)
, (A.21)

c4 =
λ̃pZ

φλpp + ΛS − ΛZ + λ̃pZ

. (A.22)

An explicit expression for the Z > 1 capture time spectrum follows from Eq. 3.11 and the

expression for n4(t):

yZ(t) = ΛZ
λ̃pZ

φλpp + ΛS − ΛZ + λ̃pZ

(
e−(λ0+ΛZ)t − e−(λ0+ΛS+φλpp+λ̃pZ)t

)
(A.23)

A.2 Calculation of Correction for Molecular

Formation

The deviation due to molecular formation of λ of the single-exponential (f(t), equation 5.9)

fit, from λ0+ΛS, has been determined by generating a lifetime spectrum from the full kinetics

solution y(t) and either calculating the first moment or fitting with f(t).1 Fitting y(t) with

f(t) has the advantage over the moment method of incorporating the fit time range and

including the effect of the background term B; therefore, this procedure is implemented and

with the generated lifetime spectrum binned exactly as in the analysis of Run8 data. An

alternative to explicit fitting is also offered: the shift in the minimum of the χ2 function is

calculated based on the difference of y(t;λ0,ΛS, ...) and f(t;λ = λ0 + ΛS).

1See Run8 Analysis ELog, Message 74: “Analysis of Time Distributions in MuCap Experiment,” S.
Clayton, P. Kammel, and B. Kiburg.
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A.2.1 General Calculation of the Shift of the χ2 Minimum

Consider a model function fm(x; {νq}) to fit data distributed according to a y(x; {ν0
q}, {µ0

r}),
where the superscript “0” indicates central (“truth”) values, {νq} is the set of Npar model

parameters (q = 1, 2, 3, ...Npar), and {µ0
r} characterize data structure in reality but not in the

model. The goal is to accurately find the parameters {ν0
q} of y. Fluctuations are included

for each data point xi by adding to y(xi) a stochastic variable ξi, gaussian distributed with

mean zero and deviation σi.

The fitting procedure finds the minimum in parameter space of

χ2 =
∑

i

1

σ2
i

(
ξi + y(xi; {ν0

q}, {µ0
r})− fm(xi; {νq})

)2
(A.24)

Deviations of the fit results from the truth values {ν0
q} are expected to be small, so we

first-order Taylor expand fm in model space around {ν0
q}:

fm(xi; {νq}) = fm(xi; {ν0
q}) +

∑
q

∂fm

∂νq

∣∣∣∣∣
xi;{ν0

q}
∆νq + ... (A.25)

Substituting this expression for fm into equation A.24 and defining a function α(xi; ...) as

the difference between the model and reality,

α(x; {ν0
q}, {µ0

r}) = y(x; {ν0
q}, {µ0

r})− fm(x; {ν0
q}), (A.26)

the expression for χ2 becomes, to first order in the Taylor expansion,

χ2 =
∑

i

1

σ2
i

(
ξi + α(xi; {ν0

q}, {µ0
r})− ~∇fm(xi; {ν0

q}) ·∆~ν
)2
, (A.27)

where the vector space is defined by the model parameters {νq}. Now we minimize the χ2

of equation A.27 with respect to the deviations ∆νq, yielding a set of Npar equations:

∂χ2

∂∆νq

= −2
∑

i

1

σ2
i

(
ξi + α(xi; {ν0

q}, {µ0
r})− ~∇fm(xi; {ν0

q}) ·∆~ν
) ∂fm

∂νq

∣∣∣∣∣
xi;{ν0

q}
. (A.28)

Defining a matrix K and vector ~J ,

K =
∑

i

1

σ2
i

~∇fm(xi; {ν0
q})⊗ ~∇fm(xi; {ν0

q})T (A.29)
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~J =
∑

i

1

σ2
i

(
ξi + α(xi; {ν0

q}, {µ0
r})
)
~∇fm(xi; {ν0

q}), (A.30)

and equating the expression in equation A.28 to zero, we have ~J − K∆~ν = 0, giving a

solution for the deviations ∆νq,

∆~ν = K−1 ~J. (A.31)

Notable features of this solution for ∆~ν include the following:

1. The matrix K depends only on partial derivatives, with respect to the fit parameters

and weighted by 1/σi, of the model function evaluated at the “true” parameter values

~ν0. In the case of counting statistics we can set σi ≈
√
fm(xi; {νq}) as long as none of

the y(xi) and fm(xi) are too far apart. For small deviations of model and reality, K

does not depend on the additional reality parameters {µr}.

2. The differences between model and reality enter via ~J , so this vector must be recom-

puted as the reality parameters {µr} are varied.

3. The stochastic variables ξi enter linearly; therefore, the average solution for ∆~ν over

many simulations, that is generating different sets of ξi and solving for ∆~ν, is the same

as setting all ξi to their central values and solving once.

A.2.2 Calculation of ∆λ vs. λOF and λOP

The effects of nonzero λOF and λOP are found by generating lifetime spectra according to

equation A.16 and calculating the shifts ∆λ of the simple exponential fits. The full kinetics

spectra are also fit with Minuit as a cross check. Figure A.1 shows the results of a study

in which spectra were generated with full kinetics, bin contents were gaussian smeared (“S”

option in TH1::Eval), and the shifts in λ from the true values were 1) calculated with

equation A.31 and 2) found by fitting (TH1::Fit); agreement is found to be good.2

With the validity of equation A.31 demonstrated, we can now turn to calculating ∆λ,

due to molecular parameters, suitable for entry into the MuCap error table. The binning,

N , B of the generated full-kinetics spectrum are set to the same values as the Run8 lifetime

spectrum. The range of the fit is also the same as that used for the MuCap result. Results

are shown in figure A.2.

2The “More” option of the Minuit fit, which more precisely finds the minimum value of the χ2 function,
is important in this comparison; Without this option the fit differs by as much as 1 s−1 from the calculation.
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Figure A.1: Comparison of the calculation of ∆λ with λ0 +Λs−λfit, where λfit is the result
of the simple-exponential fit to the simulated full kinetics spectrum.
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tion A.31.
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A.3 Fits to Data with Full Kinetics Equation

At MuCap target conditions, the full kinetics solution amounts to small deviations from the

single-exponential decay with λ = λ0 + ΛS. The smallness of these deviations allows them

to be corrected for in steps, as is done in the Results chapter of this report. The alternative

is to fit the lifetime spectrum with the full kinetics solution, fixing as many parameters as

possible. In fitting equation A.16 to the production data, N , ΛS, and B will be the only

parameters allowed to float; the rest must be fixed from calibration data and literature.

Effects not present in equation A.16 will shift ΛS from its correct value in the same way λ

of the single-exponential fit is shifted. To be entirely consistent, all significant distortions

of the lifetime spectrum should be included in the model function, such as that from µd

diffusion.

A study is presented here to check the consistency of full kinetic fits to the key data

sets — Prod50, CalibN2, and CalibNat — in light of the corrections applied in the standard

3-parameter fit procedure. The steps of the analysis for a particular time spectrum are

enumerated:

1. The time axis of the lifetime histogram is rescaled by the unblinding factor, 1/1.001.

2. The histogram is fit with the 3-parameter function; bin errors are increased to account

for 50% of the background as double counted.

3. The full kinetics function N and B parameters are initialized to those found in the

3-parameter fit. Remaining parameters, except ΛS, are fixed, including the following

(rates in s−1): triplet capture rate ΛT = 12.0; orthomolecular overlap factor γO =

1.009/2.; paramolecular overlap factor γP = 1.143/2.; hydrogen density φ = 0.0112;

atomic-to-paramolecular transfer rate λPF = 7400; atomic-to-orthomolecular transfer

rate λOF = 2300000; ortho-para transition rate λOP = 80000. Remaining fixed param-

eters are λ0, rates related to high-Z kinetics, and quantities to account for deuterium

diffusion; these require some care in setting and are described in following steps.

4. The parameter for the µ+ decay rate, λ0, is initially set to the MuLan result, 455162.20.

Corrections added to this rate are 1) 3.15 for µp diffusion, 2) 3.16 for averaging with

the CathodeAND spectrum, 3) -12.00 Huff factor. It these small corrections are not

included in λ0, they will be reflected in the fit results for ΛS.

122



 [ns]Startt
500 1000 1500 2000 2500 3000 3500 4000 4500

 [
1/

s]
S

Λ

680

700

720

740

760

780

 vs. Start Time of FitSΛProd50 

(a) ΛS from fit to Prod50 data.

 [ns]Startt
500 1000 1500 2000 2500 3000 3500 4000 4500

 [
1/

s]
S

Λ

600

800

1000

1200

1400

1600

 vs. Start Time of FitSΛCalibN2 

(b) ΛS from fit to CalibN2 data.

Figure A.3: Start time scans with full kinetics function: ΛS from Prod50, and ΛS from
CalibN2. See text for full description.

5. High-Z effects can be dealt with either by adjusting the λ0 value based on previous 3-

parameter fits, or by setting an effective transfer rate and a capture rate. In the latter

case, the parameters are fixed as suggested by the MuCap note, “Practical Impurity

Corrections,” by P. Kammel and B. Kiburg. The full kinetics function is extended to

include two different impurity species. In the present study, we use γN = 528 s−1/ppm

and γO = 525 s−1/ppm. The fraction of the observed capture yield from nitrogen is

α = 0.05 for Prod50, and α = 1.00 for CalibN2. Then for Prod50, ΛpN = γNαYZ ,

ΛpO = γOαYZ , YZ = 10.6. Similarly for CalibN2, except α = 1 and YZ = 726.9.

6. The full kinetics version of deuterium diffusion is less developed than for High-Z, but it

is attempted here just the same. The parameterization of diffusion effects described in

the MuCap note, “Analysis of Time Distributions in MuCap Experiment,” are imple-

mented; the parameterization is based directly on the ratio of the Prod50 to CalibNat

time spectra. Results of this study indicate this parameterization is problematic; there-

fore, except in the case of CalibNat fits, we use instead the deuterium correction from

the 3-parameter fits (adding it to λ0).

7. With most parameters fixed, the full-kinetics fit is performed; only N , B, and ΛS are

allowed to float.

Fit start time scans, with the full kinetics function and following the above steps, are in

figures A.3 and A.4, together comprising four plots.

• Figure A.3a: Prod50 ΛS vs. Start Time of Fit. All parameters are fixed except N , B,

and ΛS; deuterium is accounted for by including an offset in λ0. The black points are

123



 [ns]Startt
500 1000 1500 2000 2500 3000 3500 4000 4500

 [
1/

s]
Nγ

4.8

5
5.2

5.4
5.6

5.8

6
6.2

6.4

 vs. Start Time of Full Kinetics Fit
N

γ

(a) γZ from fit to CalibN2 data.

 [ns]Startt
500 1000 1500 2000 2500 3000 3500 4000 4500

 [
1/

s]
S

Λ

200
400
600
800

1000
1200
1400
1600
1800

 vs. Start Time of FitSΛCalibNat 

(b) ΛS from fit to CalibNat data.

Figure A.4: Start time scans with full kinetics function: γN from CalibN2, and ΛS from
CalibNat. See text for full description.

fit results when high-Z effects are treated by adding to λ0 and setting ΛpZ = 0. Red

points are the results with high-Z included in the full-kinetics function (nonzero ΛpZ).

The slight disagreement of the red and black points at the start time of 120 ns must

be due to slight inconsistency between γZ (full kinetics) and βZ (3-parameter).

• Figure A.3b: CalibN2 ΛS vs. Start Time of Fit. All parameters are fixed except N , B,

and ΛS; deuterium is accounted for by including an offset in λ0. The black points are

fit results when high-Z effects are treated by adding to λ0 and setting ΛpZ = 0. Red

points are the results with high-Z included in the full-kinetics function (nonzero ΛpZ).

• Figure A.4a: CalibN2 γN vs. Start Time of Fit. All parameters are fixed except N ,

B, and in this case ΛpZ ; deuterium is accounted for by including an offset in λ0. The

singlet capture rate is fixed to ΛS = 722.42.

• Figure A.4b: Calibnat ΛS vs. Start Time of Fit. All parameters are fixed except

N , B, and ΛS; high-Z is accounted for with the full kinetics. The black points are

fit results when deuterium effects are treated by adding to λ0. Red points are the

results with deuterium included in the full-kinetics function via the parameterized

Prod50/CalibNat ratio. The full-kinetics deuterium function seems to be much too

aggressive, since it drops ΛS by several hundred hertz.
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Appendix B

Calculation of Correction for Diffusion

B.1 Impact Parameter Cut Acceptance Derivation

This is a two-dimensional problem. We observe only the direction of the electron, therefore

µp displacement along that direction has no effect. A convenient coordinate system is one

defined by the direction of the electron, with the x- and y-axes orthogonal to this direction;

that is, each muon decay event has its own coordinate system. We consider a displacement

of the µp of distance Rd, which will define the x-axis. Later, a model for µp diffusion will

be imposed which takes into account phase space of the diffusion, etc., but until then the

derivation is model independent.

Decay Position

Rd

b
ρ

y

x

Stop Position

θ

Figure B.1: Illustration of the coordinate system used in this section. The observed stop
position is at the origin, the decay electron direction is out of the page (z-axis), and we
consider the muon to be displaced by Rd at the time of decay. ρ is the “actual” impact
parameter, which is distributed according to the electron detector resolution gb(b); b is the
observed impact parameter distribution, which will be distributed somewhat differently from
ρ due to the displacement Rd.

Fb is the undiffused impact parameter distribution scaled such that
∫∞
0 db Fb(b) = 1. gb(b)

is the effective detector resolution function, which is simply Fb(b) divided by the phase space
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factor 2πb: gb(b) ≡ Fb(b)
2πb

. gb will be expressed in terms of Fb for most of the derivation, since

it is Fb that is more directly observed in the data. Integration of gb(b) over the 2D space

shows that the normalization is correct.

∫ ∞

0
db
∫ 2π

0
b dθ gb(b) =

∫ ∞

0
db
∫ 2π

0
b dθ

Fb(b)

2πb
=
∫ ∞

0
db Fb(b) = 1 (B.1)

To find the acceptance εbcut(Rd) given a particular impact parameter cut bcut and µp

displacement Rd, we integrate gb(ρ) over the area in our coordinate system bounded by

b = bcut (see Figure B.1).

εbcut(Rd) =
∫ bcut

0
db
∫ 2π

0
b dθ

Fb(ρ)

2πρ
(B.2)

where ρ is found from the cosine law to be

ρ =
√
R2

d + b2 − 2Rdb cos θ (B.3)

Normalization must hold in the limit bcut →∞

lim
bcut→∞

εbcut(Rd) =
∫ ∞

0
db
∫ 2π

0
b dθ

Fb(ρ)

2πρ
= 1

which can be seen by shifting the origin to the decay position at x = Rd and using Eq. B.1.

We are interested in the change in the acceptance compared to no displacement (Rd = 0)

∆εbcut(Rd) ≡ εbcut(Rd)− εbcut(0) (B.4)

εbcut(0) is found from a simple integration over Fb(b), which can be accurately computed

from the experimental impact parameter distribution histogram:

εbcut(0) =
∫ bcut

0
db Fb(b) (B.5)

εbcut(Rd) needs to be treated with more care, however, because the ρ in the denominator of

the integrand in Eq. B.2 does not immediately cancel; numerical integration with discretely-

binned Fb could result in large systematic errors around ρ = 0. The pole can be avoided by

changing the limits of integration and using normalization:

εbcut(Rd) = 1−
∫ ∞

bcut

db
∫ 2π

0
b dθ

Fb(ρ)

2πρ
(B.6)
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While much less important for large bcut, direct numerical integration still makes mistakes

because of the discrete binning of Fb. There is a practical limit to how fine the binning can

be made due to finite statistics. Intuitively, ∆εbcut(Rd) should depend on the shape of Fb(b)

only in the neighborhood, of order Rd, around b = bcut.

B.1.1 Exact Derivation for the Change in Acceptance

Here ∆εbcut(Rd) is formulated in a way that makes clear the dependence on Fb only in the

neighborhood of order Rd around bcut. This will be accomplished by considering the same

coordinate system described above and shown in Figure B.1, but with the stop position at

x = Rd and the decay position at the origin. The detector resolution function gb, which as

before is a function of the distance from the muon decay position, is centered on the origin

of these coordinates. εbcut(Rd) is the integral of gb over a circle of radius bcut displaced by

Rd from the origin. As illusrated in Figure B.2, the change in acceptance can be found

by integrating gb over the difference of the region (C1) contained by a circle of radius bcut

centered at the origin with that (C2) contained by the same circle displaced by Rd from the

origin.

Decay Position

Rd

bcut

g(b)

A2

b

A1

Stop Position

θ

C C1 2

Figure B.2: Illustration of integration areas. C1 (C2) is the region bounded by the blue
(red) circle; A1 and A2 are the differences of C1 and C2. The triangle in the first quadrant
illustrates how to find the curve b(θ) that describes the boundary of C2. The dashed green
arc shows the integration path for constant b.

∆εbcut(Rd) =
∫

C2−C1

db b dθ
Fb(b)

2πb
(B.7)
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The integral over θ for given b is twice the arc length indicated in Figure B.2 by the green

dashed line; the θ > 0 endpoint is given by

√
b2 +R2

d − 2Rdr cos θb = bcut (B.8)

Then the integration over θ in Eq. B.7 gives

∆εbcut(Rd) = −
∫ bcut

bcut−Rd

db(1− θb

π
)Fb(b) +

∫ bcut+Rd

bcut

db
θb

π
Fb(b) (B.9)

with

θb = cos−1

(
b2 +R2

d − b2cut

2Rdb

)
(B.10)

The advantage of Eq. B.9 is that it is clear that ∆εbcut(Rd) depends only on Fb(b) in

the range bcut − Rd ≤ b ≤ bcut + Rd. The expression can further be rewritten in terms of a

weighting factor w(b) as

∆εbcut(Rd) =
∫ bcut+Rd

bcut−Rd

dbw(b)Fb(b) (B.11)

with

w(b) =

 θb(b)/π − 1 if b ≤ bcut

θb(b)/π if b > bcut

(B.12)

Figure B.3 shows plots of θb(b) and w(b) for a particular choice of bcut and Rd. We see that

w(b) is approximately antisymmetric about bcut for Rd � bcut by defining ∆b = b − bcut

and dropping terms of order Rd/bcut; the argument of the inverse cosine of equation B.10

becomes

cos θb =
b2 +R2

d − b2cut

2Rdb
≈ ∆b

Rd

+O
(
Rd

bcut

)
. (B.13)

Taylor expansion of Fb(b) about b = bcut in equation B.11 gives

∆εbcut(Rd) ≈
∫ bcut+Rd
bcut−Rd

dbw(b) (Fb(bcut) + (b− bcut)F
′
b(bcut) + ...)

≈ F ′
b(bcut)h(bcut, Rd),

(B.14)

where we have used the antisymmetry of w(b) over the integral bounds to remove even

derivatives of Fb(b), and a new function,

h(bcut, Rd) =
∫ bcut+Rd

bcut−Rd

dbw(b)(b− bcut), (B.15)
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is introduced.
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Figure B.3: (a) Plot of θb/π vs. b for bcut = 20 and Rd = 2. (b) Plot of w(b) vs. b for
bcut = 20 and Rd = 2. (The vertical line at b = 20 is an artifact of plotting a discontinuous
function in Mathematica.)

B.1.2 Impact Parameter Interval Cuts

In the type of impact parameter cut considered so far, we accept events with impact param-

eter b less than a certain bcut. An alternative is to accept events bounded by two specified

impact parameters, bcut1 ≤ b < bcut2. Lets call the former a disc cut and the latter an

annulus cut. The annulus cuts have the advantage that the data subsets formed of these

cuts are statistically independent for non-overlapping annuli.

Using the diagrams in Figure B.4 results in an expression for the change in acceptance

of an impact parameter annulus cut given a µp displacement Rd.

∆εbcut1,2(Rd) = −
∫ bcut2

max(bcut2−Rd,bcut1) db(1−
θb,2

π
)Fb(b)

+
∫ bcut2+Rd

max(bcut2,bcut1+Rd) db
θb,2

π
Fb(b)

+
∫min(bcut1,bcut2−Rd)
bcut1−Rd

db(1− θb,1

π
)Fb(b)

−
∫min(bcut1+Rd,bcut2)
bcut1

db
θb,1

π
Fb(b)

(B.16)

with

θb,n = cos−1(
b2 +R2

d − b2cutn

2Rdb
). (B.17)

In the limits of the integrals of Eq. B.16, note that the first argument of the max/min

functions are used when Rd ≤ bcut2 − bcut1, and the second argument otherwise. The same

approximate factorization as in equation B.14, here applied to the two cuts bcut1 (modifying
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Figure B.4: Diagram of integration areas for an impact parameter annulus cut. The area
between the blue (red) circles is integrated over to obtain εbcut1,2(0) (εbcut1,2(Rd)). (a) Case
Rd < bcut2 − bcut1. (b) Case Rd > bcut2 − bcut1.

h(bcut1, Rd) with an overall minus sign) and bcut2, is valid as long as Rd < bcut2 − bcut1.

B.2 ∆εbcut(Rd) from Observed Impact Parameter

Distribution

In order to predict the experimental muon decay rate deviation with impact parameter cut,

we first need to find Fb, the normalized impact parameter distribution with an undiffused

source: the derivation of the previous section is for Fb with the source at the origin, that is,

with perfect muon stop position resolution. Normalization is simple enough – just divide by

the integral over all bins in the impact parameter distrubution histogram.

The requirement of a source at the origin is less obvious due to finite TPC resolution and

perhaps µp epithermal effects at early times. Even if we take only the earliest decays for the

impact parameter distribution, before there is time for diffusion, uncertainty in the muon

stop position could affect the results. Since this uncertainty is relatively small compared

to the characteristic length scale of Fb, we will ignore it for now and proceed. Fb(b) found

from the Prod-50 µ− data is shown in figure 6.20, which is the normalized impact parameter

distribution for decays within 1 µs of the muon entrance time. Recall that the impact

parameter b in MuCap is the distance of closest approach of the reconstructed electron track

with the muon stop position as determined by the TPC.
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B.2.1 Impact Parameter Disc Cuts

Figure B.5a shows the results of numerical integration of equation B.9 for several values of

bcut and Rd and using the experimentally determined Fb(b) in figure 6.20. Figure B.5b is the
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Figure B.5: (a) Change in acceptance for a given impact parameter cut for a decay po-
sition displaced by Rd from the stop position compared to no displacement: εbcut(0) −
εbcut(Rd). These are calculated by numerical integration of Eq. B.9 with the experi-
mental impact parameter distribution (Fig. 6.20). (b) Relative change in acceptance:
(εbcut(0)− εbcut(Rd))/εbcut(0). εbcut(0) is the integral of Fb(b) from zero to bcut.

relative change in acceptance, a number more directly related to the effect on the measured

muon lifetime.

Figure B.6 is the slice of the plot in Figure B.5b for bcut = 10. Figure B.7 is the slice of the

plot in Figure B.5b for bcut = 80. The fourth-order polynomial fits will be used to calculate

the expected effect on the measured muon lifetime in the next section; the parameters are

shown in Table B.1.

B.2.2 Impact Parameter Annulus Cuts

Figure B.8 shows the results of numerical integration of equation B.16 for given Rd and

successive impact parameter cut annuli (bcut1 ≤ b < bcut2) and using the experimentally

determined Fb(b) of figure 6.20. The curves of acceptance vs. Rd for given (bcut1, bcut2) are

fit to fourth-order polynomials, and the parameters are shown in Table B.2.
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bcut A[mm−1] B[mm−2] C[mm−3] D[mm−4]
10 −5.848897× 10−5 3.053354× 10−3 −1.836551× 10−5 −3.487593× 10−6

20 1.311007× 10−5 1.211282× 10−3 3.125804× 10−6 −3.865416× 10−7

30 2.679104× 10−6 4.855824× 10−4 −2.382571× 10−8 1.677439× 10−7

40 −9.250635× 10−7 2.138383× 10−4 7.151510× 10−8 7.847068× 10−8

50 −3.127169× 10−7 1.071523× 10−4 −2.491725× 10−7 4.943574× 10−8

60 4.843679× 10−6 5.544919× 10−5 4.689749× 10−7 −1.070464× 10−8

70 −6.623036× 10−7 3.511335× 10−5 −6.344084× 10−8 1.063847× 10−8

80 1.734878× 10−6 2.148329× 10−5 1.647239× 10−7 −5.458363× 10−9

90 1.013937× 10−6 1.485015× 10−5 8.846502× 10−8 −2.876537× 10−9

100 2.342871× 10−7 1.065840× 10−5 6.326233× 10−8 −2.353117× 10−9

110 −2.707013× 10−6 9.500100× 10−6 −2.212691× 10−7 1.264452× 10−8

120 −9.683916× 10−7 6.914395× 10−6 −1.248112× 10−7 7.536558× 10−9

Table B.1: Fit results of fpol4(Rd) = ARd+BR
2
d+CR

3
d+DR

4
d to (εbcut(0)−εbcut(Rd))/∆εbcut(0)

derived from the experimental impact parameter distribution.

bcut1 bcut2 A[mm−1] B[mm−2] C[mm−3] D[mm−4]
0 10 −5.8489× 10−5 3.0534× 10−3 −1.8366× 10−5 −3.4876× 10−6

10 20 5.4217× 10−5 4.9760× 10−5 1.5927× 10−5 1.6213× 10−6

20 30 −9.8232× 10−6 −1.2330× 10−3 −5.7190× 10−6 1.3739× 10−6

30 40 −1.6093× 10−5 −1.2952× 10−3 1.2993× 10−6 −4.5671× 10−7

40 50 1.9545× 10−5 −1.0221× 10−3 −1.6871× 10−6 −3.6650× 10−7

50 60 9.2735× 10−5 −8.4027× 10−4 1.2570× 10−5 −1.0320× 10−6

60 70 −1.1121× 10−4 −5.1975× 10−4 −9.2064× 10−6 2.9332× 10−7

70 80 1.0573× 10−4 −4.8972× 10−4 1.0740× 10−5 −7.2202× 10−7

80 90 −3.5033× 10−5 −3.1037× 10−4 −3.8350× 10−6 1.3518× 10−7

90 100 9.5819× 10−6 −2.9628× 10−4 5.9886× 10−6 −3.9312× 10−7

100 “∞” −3.9110× 10−6 −1.7792× 10−4 −1.0560× 10−6 3.9281× 10−8

Table B.2: Fit results of fpol4(Rd) = ARd +BR2
d +CR3

d +DR4
d to the change in acceptance

of impact parameter annulus cuts, (εbcut1,2(0) − εbcut1,2(Rd))/∆εbcut1,2(0), derived from the
experimental impact parameter distribution.
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Figure B.6: Slice of Figure B.5b for bcut = 10, with polynomial fits. The experimental
curve (black line) does not have errors calculated, so the χ2 of the fits and errors on the fit
parameters are not meaningful. (a) Second order fit (red): fpol2(Rd) = ARd + BR2

d. The
fit is actually quite good if the range is restricted to Rd < 5. (b) Fourth order fit (blue):
fpol4(Rd) = ARd +BR2

d +CR3
d +DR4

d. The curve and data match well over the entire range
of Rd shown.

B.3 Model Effect on Measured Decay Rate vs.

Impact Parameter Cut

We start with the normalized decay time distribution

ne0(t) = λ0 e
−λ0t (B.18)

where λ0 in this case would be the decay rate observed if there were perfect acceptance. λ0

is found from ne0(t) by taking the first moment:

∫ ∞

0
dt t ne0(t) = λ−1

0 (B.19)

Time-dependent detection acceptance can be included

λ−1 =
∫ ∞

0
dt t ne0(t)ε(t)/

∫ ∞

0
dt ne0(t)ε(t) (B.20)

where ε(t) is a time-dependent acceptance and λ is the observed decay rate.

Let Fµp(Rd) be a 2-dimensional distribution function for Rd with the phase-space factor

included, where Rd represents displacement from the muon stop position, normalized such
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Figure B.7: Slice of Figure B.5b for bcut = 80, with polynomial fits. The experimental
curve (black line) does not have errors calculated, so the χ2 of the fits and errors on the fit
parameters are not meaningful. (a) Second order fit (red): fpol2(Rd) = ARd +BR2

d. At this
impact parameter cut, the data are well-described by a second order polynomial over the
entire fit range shown. (b) Fourth order fit (blue): fpol4(Rd) = ARd +BR2

d + CR3
d +DR4

d.

that
∫∞
0 dRd Fµp(Rd) = 1. Fµp(Rd) will implicitly be a function of time. Then the acceptance

for a given impact parameter cut is

ε(bcut) =
∫ ∞

0
dRd εbcut(Rd)Fµp(Rd). (B.21)

Putting this in Eq. B.20, dividing by εbcut(0), and rearranging results in an expression for the

change in observed lifetime due to the time dependence of Fµp(Rd) and a particular impact

parameter cut.

It ≡
∫∞
0 dt t ne0(t)(1 +

∫∞
0 dRd Fµp(Rd) ∆εbcut(Rd)/εbcut(0))

= λ−1
0 +

∫∞
0 dt t λ0 e

−λ0 t
∫∞
0 dRd Fµp(Rd) ∆εbcut(Rd)/εbcut(0)

(B.22)

Inorm ≡
∫∞
0 dt ne0(t)(1 +

∫∞
0 dRd Fµp(Rd) ∆εbcut(Rd)/εbcut(0))

= 1 +
∫∞
0 dt λ0 e

−λ0 t
∫∞
0 dRd Fµp(Rd) ∆εbcut(Rd)/εbcut(0)

(B.23)

∆λbcut =
Inorm

It

− λ0 (B.24)

−∆εbcut(Rd)/εbcut(0) is precisely that calculated in section B.2 from the experimental impact

parameter distribution and well-fit by fourth order polynomials (Table B.1). For Fµp(Rd),

we must choose a model.
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Figure B.8: Change in acceptance of a given impact parameter cut annulus from a decay
position displacement of Rd from the stop position. These are calculated by numerical
integration of Eq. B.16 with the experimental impact parameter distribution (Fig. 6.20).
The y-axis of the plots indicate the impact parameter cut annulus as follows: (a) Absolute
change in acceptance: εbcut1,2(0)−εbcut1,2(Rd). (b) Relative change in acceptance: (εbcut1,2(0)−
εbcut1,2(Rd))/εbcut1,2(0). εbcut1,2(0) is the integral of Fb(b) from bcut1 to bcut2.

B.3.1 Model: Thermal Diffusion with Point Source

The two-dimensional distribution function with phase-space included is

Fµp(Rd) =
Rd

σ2
t

e
−

R2
d

2σ2
t (B.25)

with σt = k
√
t. k is something like 0.7 mm/

√
µs for µp under MuCap conditions; it will

be the only parameter allowed to vary to match the cd-independent rate deviation yp(bcut)

calculated above. Performing the integrals of equations B.22 and B.23 with the distribution

of equation B.25 gives

It =
−48Dk4 +−4λ2

0B k2 + λ2
0

λ3
0

− 3π k (15C k2 + 2Aλ0)

8
√

2λ
5/2
0

(B.26)

Inorm = 1− 128Dk4 + 16B k2 λ0 + π
√

2λ0 (9C k3 + 2Ak λ0)

8λ2
0

(B.27)

where the values of the model-independent parameters A, B, C and D were found in sec-

tion B.2 and are listed in table B.1.
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B.3.2 ∆λ in terms of Moments of Arbitrary µp Distribution

Since ∆εbcut(Rd)/εbcut(0) is expressed in terms of a fourth order polynomial, the integrals

over Rd in equations B.22 and B.23 can be expressed exactly in terms of the central moments

µn of Fµp(Rd), up to µ4.
1 The nth central moment of a distribution F is

µn = 〈(x− 〈x〉)n〉 =
∫

(x− µ)n F (x) dx. (B.28)

The nth raw moment of a distribution F is

µ′n = 〈xn〉 =
∫
xn F (x) dx. (B.29)

The first four raw moments in terms of the central moments are

µ′1 = 〈Rd〉 ≡ µ

µ′2 = µ2 + µ2

µ′3 = µ3 + µ3 + 3µµ2

µ′4 = µ4 + µ4 + 6µ2 µ2 + 4µµ3

(B.30)

In terms of these, the relative change in acceptance for an impact parameter cut is

−∆ε(bcut)/εbcut(0) =
∫∞
0 dRd Fµp(Rd) (ARd +BR2

d + C R3
d +DR4

d)

= Aµ′1 +B µ′2 + C µ′3 +Dµ′4

= Aµ+B (µ2 + µ2) + C (µ3 + µµ2 + µ3)

+D (µ4 + 6µ2 µ2 + 4µµ3 + µ4).

(B.31)

For time-dependent acceptance, the moments must be time dependent. Writing equa-

tions B.22 and B.23 in terms of the moments µn (and putting in the eplicit expression

for ne0(t)) gives:

It = λ−1
0 −

∫∞
0 dt λ0 t e

−λ0t

×(Aµ+B (µ2 + µ2) + C (µ3 + 3µµ2 + µ3) +D (µ4 + 6µ2 µ2 + 4µµ3 + µ4))

(B.32)

Inorm = 1− λ0

∫∞
0 dt e−λ0t

×(Aµ+B (µ2 + µ2) + C (µ3 + 3µµ2 + µ3) +D (µ4 + 6µ2 µ2 + 4µµ3 + µ4)).

(B.33)

1see, for example, http://mathworld.wolfram.com/CentralMoment.html for a primer on moments)
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We can now choose a model distribution Fµp(Rd), calculate its moments µn(t), and perform

the integrals of equations B.32 and B.33.

Model: Thermal Diffusion with Point Source

As an example, the moments of the distribution Fµp(Rd) for diffusion from a point source,

equation B.25 with σ = k
√
t, are

µ = 〈Rd〉 =
√

π
2
k
√
t

µ2 = 〈(Rd − 〈Rd〉)2〉 = 1
2
(4− π) k2 t

µ3 = 〈(Rd − 〈Rd〉)3〉 = (π − 3)
√

π
2
k3 t3/2

µ4 = 〈(Rd − 〈Rd〉)4〉 = (8− 3
4
π2) k4 t2

(B.34)

We will need integrals of powers of t times an exponential:

∫∞
0 dt λ0 t

1/2 e−λ0 t =
√

π
2
λ
−1/2
0

∫∞
0 dt λ0 t e

−λ0 t = λ−1
0∫∞

0 dt λ0 t
3/2 e−λ0 t = 3

√
π

4
λ
−3/2
0

∫∞
0 dt λ0 t

2 e−λ0 t = 2λ−2
0∫∞

0 dt λ0 t
5/2 e−λ0 t = 15

√
π

8
λ
−5/2
0

∫∞
0 dt λ0 t

3 e−λ0 t = 6λ−3
0 .

(B.35)

With these integrals, It and Inorm can be expressed as polynomials in the model parameter

k, and Equations B.26 and B.27 follow.

Prescription for Using Diffusion Monte Carlo Data

Monte Carlo data for µp diffusion will likely consist of an isotropic 3D spatial distribution

of the µp atoms versus time. The above calculations are formulated in terms of a 2D spatial

distribution function Fµp(R) that is normalized at all times; muon decay is expressed by

integrating over the decay-time distribution of Eq. B.18. Therefore, 1) the 3D Monte Carlo

distribution with muon decay turned off should be projected onto a plane to get Fµp(R)

(don’t forget to include the 2D phase-space factor in Fµp); 2) the moments µn(t) of the

ensemble should be calculated at a series of time slices, so that the time-integral over the

decay-time distribution can be done numerically.

Alternatively, if we are given a list of N decay positions and times, (~Ri, ti), where ~Ri is

the displacement in 3D detector space of the ith muon, then we could build up the integrals
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of Equations B.32 and B.33 muon-by-muon by replacing the integrand as follows:

λ0 e
−λ0 t Fµp(R) → 1

N

N∑
i=1

δ(R− |~Ri − x̂ · ~Ri x̂|)δ(t− ti), (B.36)

where x̂ is a unit vector aligned along some detector axis. The expression |~Ri− x̂ · ~Ri x̂| ≡ ri

gives the length of ~Ri projected onto the plane perpendicular to x̂. This leads to the following

expressions for It and Inorm:

It = λ−1
0 − 1

N

N∑
i=1

ti (Ari +B r2
i + C r3

i +D r4
i ) (B.37)

Inorm = 1− 1

N

N∑
i=1

(Ari +B r2
i + C r3

i +D r4
i ) (B.38)

B.4 Generalization of the Derivation

It turns out that the completely reasonable assumption of isotropic µp diffusion is a powerful

one. As will be argued in this section, this single premise means that the derivation of

Section B.1, using the observed impact parameter distribution Fb(b) which depends only on

b, already contains such complications as TPC spatial resolution and asymmetric electron

detector resolution function gb(~b).

We start with a general, asymmetic detector resolution function, gΩ
b (~b), for a given ob-

served electron decay direction. ~Ω is defined in the absolute detector coordinate system

SeDet. (The superscript Ω on gb is dropped for the remainder of this section.) Let Ω define

z-axis of the the space SΩ of gb up to a rotation about Ω. The origin of SΩ is fixed at

the muon decay position. Since the variation of gb is naturally fixed with respect to the

orientaion of SeDet, we take the projection of the zeDet-axis onto the plane perpendicular to

zΩ to define the xΩ-axis. To clarify, gb(r, θ) is now allowed to vary with both r and θ, where

θ is the angle in the SΩ system.

Recall that in the derivations of this note, the relative coordinate system (call it SRd)

for gb is oriented such that the µp displacement ~Rd is along the +x-axis. Let γ denote the

angle between ~Rd and the zeDet-axis projected onto the plane perpendicular to Ω. Then SRd

and SΩ are related by a rotation γ about their common z-axis. Now that we are allowing gb

to vary with angle, we must account for the orientation of the SRd coordinate system. Let
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~a = (a, θa) be a vector in the relative coordinate system. Then the substitution

gb(a, θa) → gb(a, θa − γ) (B.39)

maps gb from SΩ to SRd.

B.4.1 Asymmetric Resolution Function

That the general asymmetric gb(~b) can be replaced with a symmetric gb(b) in case of isotropic

µp diffusion follows immediately from the mapping of SΩ to SRd. We have a µp distribution

function Fµp(Rd) =
∫ 2π
0 dγ Fµp(~Rd), where ~Rd is the vector displacement of the muon decay

position from the muon stop position in the SΩ coordinate system. The change in acceptance

ε(bcut) for some impact parameter cut bcut is given by the integral

∆ε(bcut) =
∫ ∞

0
dRd

1

2π

∫ 2 π

0
dγ Fµp(Rd) ∆εbcut(Rd, γ), (B.40)

where the second argument of ∆εbcut(Rd, γ) is necessary to keep track of the direction of ~Rd.

∆εbcut(Rd, γ) is given by Eq. B.7 written in terms of gb:

∆εbcut(Rd, γ) =
∫

C2−C1

db b dθb gb(b, θb − γ). (B.41)

The integration areas C2 and C1 are those shown in Fig. B.2, defined in the SRd coordinate

system, i.e., not explicitly dependent on γ. Substituting this into Eq. B.40 gives

∆ε(bcut) =
∫∞
0 dRd

1
2 π

∫ 2 π
0 dγ Fµp(Rd)

∫
C2−C1

db b dθb gb(b, θb − γ)

=
∫
C2−C1

db b dθb

∫∞
0 dRd Fµp(Rd)

1
2 π

∫ 2 π
0 dγ gb(b, θb − γ).

(B.42)

Therefore, if the µp diffusion is isotropic, we can without approximation work with an

averaged resolution function gb:

gb(b) ≡
∫ 2 π

0
dγ gb(b, γ) =

Fb(b)

2π b
. (B.43)

B.4.2 TPC Spatial Resolution

The TPC indicates the muon stop position at discrete points with 4 mm spacing in xeDet

and zeDet, and somewhat better (≈1 mm) in yeDet. These discrete points will have quite

different spacing in the SΩ coordinate system. For a measured muon stop position ~Rmeas in
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the SΩ coordinates, let ~R be the vector to the actual stop position. We define a distribution

function gres(~R) to represent the actual stop position.

With these definitions, we can account for the TPC resolution simply by making the

replacement

gb(~b) →
∫
d~R gres(~R) gb(~b− ~R). (B.44)

Note that as with gb, the orientation of the space of gres is fixed with respect to the absolute

detector coordinate system, and otherwise gb and gres could transform differently under

rotation, invalidating the substitution.

The observed impact parameter resolution for short times after the muon stop, taking

into account asymmetric gb and the TPC spatial resolution, is

F obs
b (b) =

∫ 2 π

0
dθb b

∫
d~R gres(~R) gb(~b− ~R) (B.45)

By using the observed impact parameter distribution function to define gb, we were already

taking into account both the TPC resolution and possible (likely) asymmetries in the e-

Detector resolution function.

B.4.3 Translational Variance of the Resolution Function

The resolution function will certainly vary with muon stop location to some extent, particu-

larly for large impact parameters for which the electron track is near the edge of the electron

detector. The question is, have we already taken into account such variation of gb by using

the observed t ≈ 0 impact parameter distribution? Within the bulk of the muon stopping

distribution, that is away from its edges by at least the µp diffusion length scale ld ∼ 〈Rd〉,
the answer seems to be affirmative. A second requirement, other than being away from the

edges of the TPC, is that the muon stopping distribution does not vary too much over the

distance ld. In this case we can imagine that the actual muon decay position is approached

symmetrically from the actual muon stop position; therefore, the arguments of the previous

subsections are still valid.

By diffusing outward, muon stops near the edge of the TPC fiducial cut (∼ 10−2 of all

stops) can sample a slightly different detector resolution than the bulk of the stops. As

long as the overall impact parameter distribution at t > 0 is well represented by the t ≈ 0

distribution, the edges are probably not important.
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Appendix C

Description of Analysis Software

C.1 Raw Data Parsing

The bulk of the raw data are from time-to-digital-conversion (TDC) data-aquisition (DAQ)

modules, which record the times of hits in each input channel. The raw data from each DAQ

module are sorted into time-ordered arrays of hits. Hits from all channels serving electron

detector elements and muon entrance detectors are combined into a single, time-ordered

array of hit times and corresponding channel identification numbers. TDC400 data are more

conveniently arranged into a separate, time-ordered array of structures, with each structure

comprising bit patterns representing the status of each wire of the TPC for each threshold

(EL, EH, EVH). Low-level data-quality checks identify and remove the rare occurences of

blocks that exhibit known, troublesome behavior. The procedures that handle these basic

raw data parsing tasks are common to both the UIUC and UCB analyses.

C.2 Electron Definition

C.2.1 eSC Clustering

Clustering of singles (PMT) hits into 4-fold clusters, time-coincidences between all four

PMT’s the same eSC segment (“gondola”), is performed separately on each gondola. The

algorithm is the following:

1. Loop over singles hits, and as each singles hit is encountered, apply a fixed 65-ns dead

time to that PMT channel.

2. Adjust each singles hit time, by an amount specified in the parameters file, to account

for slight variation in the timing with respect to the other PMT channels (from slightly

different cable lengths, for example). In practice, the times are adjusted by up to≈2 ns.
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Figure C.1: Left: (φ, z) Distribution Based Only on eSC Information; Middle: φ-Projection
of the leftmost histogram; Right: z-Projection of the leftmost histogram. φ is taken at the
center line of each eSC segment, and z is based on the time difference between upstream
and downstream detectors of a 4-fold cluster.

3. Find clusters of singles hits within 30 ns, the maximum coincidence window plus a few

ns to account for the small relative timing offsets between the PMT channels. These

clusters can be considered 4-fold candidates. Since the individual PMT channels have

artificial dead times of 65 ns, there can never be more than four time-coincident PMT

hits on a given gondola, up to one hit from each of its four PMT channels.

4. Check the candidates for good 4-fold hits. Each must contain exactly one hit from

each of the four PMT’s and have relative PMT timings within 15 ns for PMT’s on the

same end (upstream or downstream), and 25 ns for PMT’s on opposite ends. The time

is taken to be the average of the four PMT times. The z-position is the time difference

between the average of the upstream PMT times, minus the average of the downstream

PMT times, and multiplied by a velocity factor: z = vgond(tupstream− tdownstream), where

vgond = 67 mm/ns from a study in which a source was placed along the length of one of

the gondolas. The angle φ of the cluster is simply the angle of the lengthwise centerline

of the eSC segment.

The resulting (φ, z) distribution is shown in Fig. C.1. Each (t, φ, z) cluster itself is considered

an electron object in the simplest definition considered. Temporal and spatial coincidence

of these clusters with ePC clusters define complete e-detector tracks, as described below.

C.2.2 ePC Clustering

The analysis initially treats the ePC’s separately, constructing for each an array of ePC

objects corresponding to particle traversals. Each ePC object requires a hit in an anode and
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zero, one (inner or outer), or both (inner and outer) cathodes. Selection on whether or not

the cathodes are present is done at a later stage, when ePC1 objects are paired with ePC2

objects to form “e-detector track candidates.”

Since a particle traversing a multiwire proportional chamber plane can cause multiple

wires to fire, the singles hits must be grouped together into clusters, each characterized

by time, location in the plane, and size. The basic single-plane clustering algorithm is the

following:

1. Project singles hits in the plane onto the time axis and find time-coincident hits.

2. Sort time-coincident hits by wire number.

3. Define clusters as groups of singles hits continuous in wire number, possibly allowing

a small gap. The cluster time is taken to be the time of the first hit of each cluster.

Cluster location is the average of the wires in the cluster, and cluster size is the number

of singles hits.

Details of the clustering algorithm are set by a collection of parameters that are customized

for each detector plane.

• TimeWindow. The clustering time width, its specific meaning depends on the value of

the next setting. Its value is ≈ 300 ns for each ePC plane.

• DiffClustering. If non-zero (TRUE), the time difference between successive singles

hits in step 1 of the clustering algorithm are compared to the clustering time width. If

zero (FALSE), the time with respect to the earliest singles hit in the potential cluster is

used instead. This parameter was set to TRUE in the final analysis pass; no significant

differences were noticed in the past by varying this parameter, but more further studies

could be envisioned.

• DeadTime. As the singles are encountered in chronological order, individual wires are

“killed” for this number of ns. That is, if a subsequent hit occurs on the same wire

within this time, it is ignored. In a special study, this value was varied around its

nominal setting of around 1000 ns for each ePC plane, and no appreciable effect was

observed.

• UpdatingDeadtime. If non-zero (TRUE), hits that fall within the deadtime of a

previous hit on the same wire extend the deadtime. This is similar to how an updating
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discriminator extends the output pulse if an additional input signal falls within the

output pulse width. This value is nominally set to TRUE.

• AllowedGap. In step 3 of the clustering algorithm above, this is the maximum allowed

wire number gap to be part of the same cluster. (1 means adjacent wires, 2 means one

wire missing, etc.) This value is set to 2 for ePC anodes and 3 (two wires allowed to

be missing) for ePC cathodes.

After the individual planes are clustered, an attempt is made to find coincident cathode

clusters for each anode cluster. The procedure to fill information into an ePC hit object

starts with an anode cluster, which gives the time tePC and cylindrical coordinate φePC, and

then goes on to fill in the cathodes-based data as follows:

1. Search for inner and outer cathode clusters each time-coincident with the anode cluster,

and the z-position from the anode×inner coincidence (Zanode×inner) near that of the

anode×outer coincidence (Zanode×outer). The z-position is taken to be the average of

Zanode×inner and Zanode×outer.

2. If no anode/innner/outer coincidence is found, search for an inner cathode cluster

time-coincident with the anode cluster and with Zanode×inner within the active length

of the detector.

3. If no anode×inner cathode cluster is found, search for an outer cathode cluster time-

coincident with the anode cluster, and Zanode×outer within the active length of the

detector.

C.2.3 ePC1×ePC2×eSC Coincidences

Coincident ePC1 and ePC2 hits are considered “electron track candidates,” subject to later

approval by the eSC. Different versions of the track candidates are considered separately:

• Anodes Only. Cathode information in the ePC objects are ignored.

• Either Cathode. At least one cathode is required to be coincident with the anode.

• Both Cathodes. Both inner and outer cathodes must be coincident with the anode.

All ePC1, ePC2 pairs that satisfy the cuts constitute the electron track candidates for a

given cathodes requirement (none, either, or both).
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Description of Constraint
TeSC − TePC1 ≥ −15 ns
TeSC − TePC1 ≤ 166 ns
TeSC − TePC2 ≥ −46 ns
TeSC − TePC2 ≤ 131 ns
ZeSC − ZePC1×ePC2@eSC ≥ −300 mm
ZeSC − ZePC1×ePC2@eSC ≤ 300 mm
φeSC − φePC1×ePC2@eSC ≥ −0.3
φeSC − φePC1×ePC2@eSC ≤ 0.3

Table C.1: eSC×ePC1×ePC2 Coincidence Cuts. The φ- and Z-cuts act on the φ and Z
location of the ePC1×ePC2 track extrapolated to the radius of the eSC.

The electron track-finding procedure associates eSC 4-fold clusters with electron track

candidates (ePC1×ePC2) to form complete electron detector track objects, which will be

used directly in muon decay time spectra. Each eSC 4-fold hit and ePC1×ePC2 candidate

is used at most once, though it should be noted that, in ePC1×ePC2, a hit in one of the

ePC’s can be used more than once if there is more than one hit in the other ePC.

An important design decision of the UIUC analysis was to keep the electrons and muons

logically separate until the last step of formation into lifetime spectra. This has immediate

consequences in how the electron tracks are formed in the case of ambiguities, that is, when

there is a choice in any of the detectors of which hit to associate with the others. One option

is to retain all possible combinations until a later stage of the analysis, when the electron

tracks are associated with muons, and then do some kind of “redundancy reduction” to avoid

overcounting; that is the approach of the Berkeley analysis. Another option is to make a

choice earlier on, even if it’s wrong, of which e-detector track candidates to use. As long as

the choice is not somehow lifetime dependent or exaggerates deadtime effects, it should only

amount to perhaps a difference in time-independent efficiency. The UIUC analysis indeed

takes the latter option: eSC 4-fold hits are each paired with one and only one ePC1×ePC2

candidate.

If there is only one ePC1×ePC2 candidate that is T -, φ- and z-coincident with the eSC

4-fold hit, then the track is unambiguous and is considered a good e-detector track; table C.1

lists the coincidence parameters.

The situation is more interesting if there are more than one ePC1×ePC2 candidate for

a given eSC 4-fold hit. The code tries to “optimize” the matching of eSC 4-fold hits to

ePC1×ePC2 candidates based on some loose criteria explained below. First, lists of all eSC

4-fold hits and ePC1×ePC2 candidates linked by time and space coincidences are populated.
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Then all ways of associating the eSC 4-fold hits with the ePC1×ePC2 candidates are tried,

and the “best” combination is chosen. The algorithm is roughly the following:

1. The index of the eSC 4-fold hit being considered is entered as the first and only item

in an eSC 4-fold indices list.

2. A list of indices of all ePC1×ePC2 candidates that are (T, φ, Z)-acceptable for the eSC

4-fold hit is populated.

3. A list of indices of additional eSC 4-fold hits that are (T, φ, Z)-acceptable, for at least

one member of the ePC1×ePC2 indices list, is added to the eSC 4-fold indices list.

4. Steps 2 and 3 are repeated until no more hits are added.

5. If there are too many ways of associating the two lists, go to the next step. Otherwise,

try each way, calculating a fitness function for each way. Basically, the fitness function

favors a higher number of successful pairings of the eSC with the ePC’s. The fitness

of a way of pairing them is initially zero (best), and points are added for each pair:

• Check for time-coincidence. If the eSC 4-fold hit and ePC1×ePC2 are not time-

coincident, give a 10-point penalty.

• Check for φ-coincidence. If not φ-coincident then add 10 points to the overall

fitness; if it is φ-coincident but the ePC1×ePC2 does not point directly at the

eSC segment, then add to the fitness an amount ≤ 1, increasing the further away

from the eSC segment the candidate track points.

• Check for z-coincidence. If not z-coincident then add 10 points; otherwise, add an

amount ≤ 1, increasing the further away from ZeSC the track candidate points.

Once all ways of pairing are evaluated, choose the one with the lowest penalty and

make complete e-detector track objects from the valid (T, φ, Z)-coincident pairs.

6. In the very rare case there are so many ways of associating the two lists that computa-

tion time would be prohibitive, then, rather than throwing out all or just picking the

first one, the φ-coincidence cut is made more restrictive: the ePC1×ePC2 candidate

must point directly at the eSC segment. The more restrictive cut applies only to this

group. Then the whole procedure of associating eSC with the ePC track candidates is

repeated. If there are still too many combinations, only then is the group thrown out.
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Figure C.2: e-Detector Track Cuts: eSC×ePC1×ePC2. The coincidence cuts are indicated
by the vertical lines. In the φ-coincidence histogram (third panel from left), the red lines
indicate the more restrictive cut optionally applied in Step 6 of the optimization algorithm.
The histograms displayed are based on the ePC hits that have at least one cathode included
(“Cathode OR” selection).

It is likely these are some kind of spark of weird shower event anyway, not something

we want.

C.3 Spark and Noise Cuts

Sparks in a MWPC are characterized by high-multiplicity clusters. They are removed at

various stages of the analysis by vetoing all muon entrances within a specified time interval

∼ 50 µs around the the spark time. Several methods identify spark intervals:

• An early analysis stage looks for 45-µs periods during which there are an unusually

high number of singles hits in any MWPC plane except the TPC. This method only

finds very large spark events, but removing these very-high-multiplicity events at an

early stage prevents them from wasting computation time in later analysis stages.

• Signals on TPC anodes 1–4, which are non-amplifying, provide a simple means to

identify sparks in the TPC.

• The most aggressive spark cut is on ePC and MuPC cluster sizes. In the most recent

analysis pass, clusters that include more than 10 wires were flagged as sparks. No

evidence of a lifetime shift was noted compared to earlier analysis passes with much

less aggressive cuts (∼ 100 wires), but more systematic studies should be considered

in the future.
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In a given ePC plane, some channels may show much higher count rates than any other

in the same plane. These wires are identified in the first few data blocks of each data file

and masked for the remainder of the analysis of that file.
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Appendix D

World Average gP Determination

In this chapter, previous measurements of muon capture in hydrogen are reinterpreted using

modern values of the parameters in the kinetic equations (Section 3.3) and in the phe-

nomenological calculation (Section 2.3). The goal is to produce a plot of gP vs. λop, similar

to those shown in Fig. 1.7, for each of the muon capture experiments. We start with the

experimental conditions summarized in Table II of the review by Gorringe and Fearing [12];

relevant entries from the table are reproduced here in Table D.1.

For each experiment and given values of the molecular formation rate λof and the pµp

ortho-para molecular transition rate λop, the value of gP that gives a theoretical prediction

for the capture rate ΛTh
c that matches the experimental result is found. The plot is produced

by sweeping λop. The effect on the gP determination from uncertainty in λof is studied by

producing three different gP solutions for each setting of λop: one with λof fixed to its central

value, and two more with λof shifted larger and smaller by its 1-σ uncertainty. The (relatively

small) uncertainty thus discovered is then added in quadrature to the experimental uncer-

tainty in gP . The uncertainty in gP due to λop is read off the plot of gP vs. λop. It is added

in quadrature to finally produce a single number that is the experimental determination of

gP for the experiment considered — these are the gP values shown in Fig. 7.2.

The procedure to calculate each of the plots in Fig. D.1 (except the radiative muon

capture band and the averages in the lower right corner) is outlined:

1. The kinetics parameters λof and λop are fixed to some values. These will be used in

the calculation of a theoretical prediction for the capture rate.

2. The results of the phenomenological calculation outlined in Section 2.3 are used here

for ΛS and ΛT as a function of gP (all other parameters of the phenomenological

calculation are fixed). Capture rates from the molecular states, Λom and Λpm, are

determined by ΛS, ΛT , and the well-known molecular overlap factors γO and γP (see

Eqs. 2.48 and 2.49).
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Density Start Time Capture Rate
Reference n/n0 ≡ φ t1 (µs) Λc (s−1)
Hildebrand (1962) 1.0 0.0 420± 120
Hildebrand and Doede (1962) 1.0 0.0 428± 85
Bertolini et al. (1962) 1.0 0.0 450± 50
Bleser et al. (1962) 1.0 1.0 515± 85
Rothberg et al. (1963) 1.0 1.2 464± 42
Alberigi-Quaranta et al. (1969) 0.014 0.9 651± 57
Bystritskii et al. (1974) 0.072 1.4 686± 88
Bardin et al. (1981) 1.0 2.5 433± 15

Table D.1: (from Table II of Gorringe and Fearing [12]) Summary of experimental parameters
and results from previous measurements of ordinary muon capture in hydrogen. The density
φ of the hydrogen target is with respect to liquid hydrogen density. The start time t1 is the
(average) time delay from when the muon stops in the target to when observation begins.
The Bardin et al. experiment, which used the lifetime technique, is updated with the most
recent world average of the positive muon lifetime [8].

3. The theoretical prediction ΛTh
c depends on the particular experimental conditions:

hydrogen density φ, observation start time t1, and whether neutrons (for the absolute

capture yield) or electrons (for the lifetime technique) are detected.

If the measurement is based on neutron detection, as in most prior ordinary muon

capture (OMC) experiments, a neutron appearance time spectrum yn(t) is generated

from the solution to the full kinetics equations (Appendix A): yn(t) = N(ΛSn1(t) +

Λomn2(t) + Λpmn3(t)). The predicted capture rate is

ΛTh
c = λ0

∫ t2
t1
yn(t)dt

N(e−λ0t1 − e−λ0t2)
, (D.1)

where t2, the stop time of the observation interval, is set to 20 µs in this study if it

is unknown for the particular experiment (ΛTh
c is not sensitive to t2 as long as t2 is

sufficiently large).

If the measurement is based on the lifetime technique, as in the Bardin et al. and

MuCap experiments, the electron appearance time spectrum is generated according

to Eq. A.16. The predicted capture rate is then ΛTh
c = λ−µ − λ0, where λ−µ is from a

single exponential fit to the generated lifetime spectrum with the fit range t1 < t < t2.

(Actually, the equivalent method described in Section A.2.1 of calculating the shift, in

fit parameter space, of the χ2 minimum is used to calculate directly ∆λ ≡ λ−µ − λ0 =
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Λc.)

4. The previous step gives a prediction ΛTh
c (gP ), for a given value of gP , that can be

compared directly to the experimental capture rate ΛEx
c . A χ2 function is defined:

χ2 =

(
ΛEx

c − ΛTh
c (gP )

σΛ

)2

, (D.2)

where σΛ is the reported uncertainty in ΛEx
c . The χ2 function is minimized by calling

standard MINUIT algorithms, with values of the model function ΛTh
c (gP ) generated as

describe above. The result of the minimization gives the experimental determination

of gP and its uncertainty.

5. New values of λof and λop are chosen, and the procedure repeats starting with Step 3.

The radiative muon capture (Wright et al.) band is not calculated in this study but is copied

from Fig. 1.7. The “world average” bands in the lower right panel of Fig. D.1 are calculated

by averaging together the gP vs. λop bands of the individual experiments. Following Gorringe

and Fearing [12], the gP determinations from the bubble-chamber experiments (top row of

Fig. D.1) are omitted from the world-average calculation.
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Figure D.1: Updated experimental determinations of gP vs. the pµp molecular transition
rate λop (λof = (2.3±0.5)×106 s−1). All determinations except that from the radiative muon
capture (RMC) experiment (Wright et al.) are calculated by comparing the experimental
capture rates to the theoretical prediction versus gP . The band for gP from the Wright et
al. experiment is copied directly from Fig. 7.1. The vertical scale is changed in the last
two plots, which show the three most precise measurements and averages computed from
combinations of the experimental determinations. The “old OMC world average” includes
Bleser et al. through Bardin et al. (five experiments). The “new OMC world average”
additionally includes MuCap. The “new world average” further includes the Wright et al.
radiative muon capture (RMC) experiment.
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