
µCap DAQ Technical Report and User Manual

Tom Banks and Fred Gray
University of California, Berkeley

May 21, 2003

1 DAQ hardware and software

TheµCap DAQ system consists of the following elements:

• Crate 1, a 9U VME crate containing

– CPU: Motorola MVME2600 (hostname psfe90; 200 MHz PowerPC 604e)

– SBS Technologies PMC-Gigabit-ST3 gigabit Ethernet card

– Active electronics: 3 TDC400 modules

• Crate 2, a 9U VME crate containing

– CPU: Motorola MVME5100 (hostname psfe91; 500 MHz PowerPC 7410)1

– SBS Technologies PMC-Gigabit-ST3 gigabit Ethernet card

– Active electronics: 4 TDC400 modules

• Crate 3, a 6U VME crate containing

– CPU: Motorola MVME2300 (hostname psfe92; 333 MHz PowerPC 604r)2

– Active electronics: 2 CAEN V767 multi-hit TDCs, SIS36xx FIFO for ePC compres-
sors, 4 Struck DL401 flash ADCs, 1 Struck DL403 clock generator

• Crate 4, a 9U VME crate containing

– SIS VME-PCI interface

– CPU: commodity PC (hostname mulandaq, dual 1 GHz Pentium 3; National Semicon-
ductor DP83820 gigabit Ethernet)

– Active electronics: 6g − 2 two-phase waveform digitizers, 1g − 2 multi-hit TDC

1Borrowed from Martin Grossman as a temporary replacement for a second MVME2600.
2Borrowed semi-permanently from Martin Grossman.

1

Figure 1: Top-level page of theµCap MIDAS interface.

• Control PC

– CPU: commodity PC (hostname pc3608, 1.7 GHz Pentium 4; Intel PRO/1000 T Server
Adapter gigabit Ethernet)

The computers are connected through a D-Link DGS-1008T gigabit Ethernet switch. The
control PC and crates 1, 2, and 4 are equipped with gigabit Ethernet cards, while the rate in crate 3
is expected to be low enough that gigabit speed is not required.

2 Quick start guide

When pc3608 is booted, themserver , mhttpd , andmlogger MIDAS processes are started
automatically. Consequently, it is possible to connect a Web browser to

http://pc3608.psi.ch:8081/

with no further setup. The resulting top-level page appears in Figure 1. The first stage in starting
up the system is to verify that the system is in the “Stopped” state, as indicated next to the run
number 142 in Figure 1. Otherwise, this text would indicate “Running” on a green background. If

2

Figure 2: Page obtained by selecting “Programs” from the top-level page of the MIDAS interface.

Figure 3: Page obtained by selecting “Start” from the top-level page of the MIDAS interface.

necessary, the run should be stopped by selecting the “Stop” button, which appears in place of the
“Start” button when relevant.

The next step in starting up the system is to select the “Programs” button. This button leads to
a page that lists all MIDAS processes, indicating whether or not they are running. If a process is
running, the associated hostname is displayed on a green background. Otherwise, the words ”Not
running” are displayed on a red background. A button is provided to start or to stop each process.
In normal operation, all of the processes listed must be running. To return to the top-level page,
one may select the “Status” button.

Once all processes have been started, a run may be started by selecting the “Start” button on
the top-level page. This action will lead to a page requesting the new run number, as shown in
Figure 3. The run number should be verified or updated, and the “Start” button should be selected
on this page as well. Unless an event limit or file size limit has been selected in the logger settings,
the run will continue until it is explicitly stopped by selecting the “Stop” button on the top-level
page.

3

3 Software structure

Each crate runs a MIDAS front-end program. Crates 1 and 2 run exactly the same program; crates
3 and 4 each have their own unique program. These program transmit their partial events over the
network to the MIDAS event builder running on pc3608. Events arrive asynchronously from the
crates and are matched up according to their serial numbers by the event builder. The event builder
contains user hooks to which online compression can be attached.

The four crates synchronize with each other through the MIDAS remote procedure call (RPC)
mechanism. RPC services allow one program to initiate calls to one of a designated set of func-
tions within a different program, even if the two programs are running on different machines. The
procedure call takes the form of a network message sent over a TCP stream. The MIDAS library
function cm yield , which is called periodically by all relevant processes, checks for any mes-
sages that may have been received and calls the associated handler functions with the arguments
provided. Optionally, the caller may wait for the recipient function to exit and return a value to the
caller.

Crate synchronization involves two RPC calls:

• rpc ready for cycle(INT crate number, INT cycle number) :
Direction: From other crates to crate 3.
This RPC indicates that cratecrate number is ready to start another event involving RAM
numbercycle number .

• rpc end of cycle(INT cycle number, INT event number) :
Direction: From crate 3 to other crates.
This RPC indicates that the data-taking phase of the most recent event, numberevent number
involving RAM numbercycle number , has ended and that its readout should begin.

Both of these RPCs are used inTCP FASTmode, which does not wait for a value to be returned.
In this mode, RPCs seem to have a latency of a few hundred microseconds.

This handshaking method is essentially a “pre-approval” process. Each crate sends itsrpc ready
for cycle message as soon as it has finished its readout of the previous event, without waiting
for the end of the current event. In general, crate 3 should receive the RPCs permitting the begin-
ning of the next RAM2 cycle before the RAM1 cycle is finished. The WFDs (crate 4) are treated
as a special case. If the ODB key/Equipment/Crate 4/Settings/Synchronous is set
to “n,” then the WFDs (crate 4) are treated as a special case. They do not have a double-buffer or
FIFO mechanism, so they would otherwise introduce significant deadtime. If this ODB property
is set to “n,” then crate 3 does not wait for anrpc ready for cycle from crate 4. If it has
been received by the time it is otherwise ready to start the next cycle, then the WFDs are included;
otherwise, they are not. When crate 4 is not included, the WFD start signal is not generated, and
no rpc end of cycle message is sent to crate 4 at the end of the cycle. Crate 4 later sends the
appropriate number of zero-length events in addition to its next real event to catch up and remain
synchronized.

Many useful configuration options are accessed through the online database (ODB). The ODB
is a hierarchical system like a filesystem directory structure that maps keys to values. The Web
interface, reached by selecting the ODB button on the top-level status page, allows the user to
navigate though the hierarchy of subdirectories to reach a key of interest and to view and modify

4

MVME2600 (200 MHz PowerPC 604e) MVME5100 (500 MHz PowerPC 7410)
MTU BSD sockets Zero-copy BSD sockets Zero-copy
1500 15.8 30.3 65.8 94.1
9000 18.7 36.2 80.4 119.5
16000 18.8 37.2 78.9 92.8

Table 1: Throughput (106 bytes/s) of the gigabit link using a benchmark program to transmit
random data.

its value. For example, the key/Equipment/Crate n/Settings/Enabled enables or
disables craten in the readout. Similar keys exist for each module to provide finer-grained control
of what subset of the system is in use. The VME base addresses of each module are also set through
the ODB, as are parameters such as pedestals and thresholds. The contents of the ODB are saved
in each raw data file, providing a permanent history of the configuration of the DAQ system.

4 Gigabit Ethernet performance

A number of throughput tests were performed with the gigabit Ethernet system. The theoretical
maximum throughput of TCP/IP over gigabit Ethernet using standard 1500 byte frames is117.7×
106 bytes/s. It seems to be possible to almost reach this rate with sufficiently fast computers on each
end, but a substantial amount of CPU time is required to do so. Notably, the older MVME2300
and MVME2600 CPUs are not capable of even getting close.

To measure potential throughput, a benchmark program supplied by John Heffner of the Pitts-
burgh Supercomputing Center was used. It provides two modes, one which transmits data using
the ordinary BSD socket library and one which uses thesendfile system call. The latter mode
is called “zero copy” because it allows the Linux network protocol stack to avoid touching the data
being transmitted; in this mode, all copy and checksum operations are offloaded to the network
card rather than being performed by the main CPU. Table 1 shows the throughput achieved as a
function of the maximum transmission unit (MTU) for two different CPU boards. No inexpensive
gigabit switch, including ours, supports MTU settings larger than 1500 bytes (“jumbo frames”), so
these tests were performed with a direct cable connection from the PowerPC board to pc3608. The
TCP window size was set to 256 KB on both sizes.

One important discovery was that all PCI latency register on the MVME2300 and MVME2600
series boards are set to 0 by the Motorola firmware. This register indicates how long each device
is allowed to monopolize the PCI bus with burst transfers; a value of 0 disables burst transfers
altogether. Not surprisingly, performance was very poor with this setting, typically around10×106

bytes/s. The values shown in Table 1 were obtained with a PCI latency timer setting of 128, which
is the default for the MVME5100 series boards. A small additional improvement beyond these
results can be obtained with a latency timer value of 255, which is the maximum.

5

5 PowerPC Linux setup

As part of the recent MIDAS development, the crate CPUs were set up to run under Linux rather
than vxWorks. A jumper on each CPU board (in a different location on each model; see the
Motorola documentation) selects between two different flash memory modules for the board’s
bootstrap program. One of the modules contains the vxWorks firmware, and the other contains the
original Motorola PPCBug firmware, which is used to load Linux. The Linux kernel is downloaded
using the TFTP protocol from the/tftpboot directory on pc3608. A kernel was custom-built
for each board using the source distribution obtained via rsync from thelinuxppc 2 4 devel
tree as described at

http://www.penguinppc.org/dev/kernel.shtml .

The kernel is then configured to mount its root filesystem via NFS (Network Filesystem) from
pc3608:/data/ppc/export/ hostname. This directory contains a copy of the Debian GNU/Linux
3.0 distribution for the PowerPC. Unfortunately, this NFS hostname and path are set in each kernel
image through the kernel configuration file, so it is necessary to rebuild the kernel to change them.

On the other hand, if it ever becomes necessary to change the PowerPC configuration, which
is used for TFTP, there are a few essential and non-obvious PPCbug commands to be used on the
serial line interface. The network settings are accessed through theniot (“network I/O teach”)
command, while all other relevant parameters are set withenv . Finally, “factory fresh” boards are
shipped with the real-time clock disabled; for some reason, this also inhibits the network interface.
Consequently, the clock on a new PowerPC board must be set in PPCBug with the command
set MMDDYYhhmm, where the argument represents the current date and time.

6 PVIC mode

Previous incarnations of theµCap DAQ system have used the PVIC link, a proprietary PCI bus
interconnect system procured from Creative Electronic Systems (CES) SA. Although the current
configuration of the system does not use the PVIC bus in any way, a mode of operation exists
and has been tested where it provides the primary data transfer mechanism. However, it was not
reliable enough to actually be suitable for production running; at higher transfer rates, the PVIC
bus sporadically locks up or drops nodes from the chain. The PVIC hardware has been returned to
CES so that known fixes to the transceivers can be applied.

If it does not prove possible to transfer data with sufficient bandwidth from crates 1 and 2 using
gigabit Ethernet, the PVIC will likely have to be re-introduced. In this event, a hybrid scheme will
probably be used: the PVIC link will connect only crates 1 and 2 to the control PC. By keeping
the PVIC chain shorter and the number of nodes smaller, the stability of the system is likely to be
somewhat better.

In PVIC mode, a PVIC event builder program is run on pc3608, in place of or (in hybrid mode)
in addition to the ordinary MIDAS event builder program. It is based on the master program from
the pre-MIDAS DAQ system, but it has been converted to the form of a MIDAS front-end program
so that it can inject data into the MIDAS buffer system. It coordinates with the crate front-end
programs to transfer data from a reserved area (with amem=kernel boot option) near the top of the

6

RAM of the crate PC to a similar area on pc3608. The data in this area is formatted as a MIDAS
event. Two additional RPC calls are employed:

• rpc event ready(INT crate number, INT event number, INT pci address,
INT size) :
Direction: From crates to PVIC event builder.
This RPC indicates that cratecrate number has finished reading out eventevent number ,
and that the data begins at its addresspci address and extends forsize bytes.

• rpc buffer free(INT pci address) :
Direction: From PVIC event builder to crates.
This RPC indicates that the PVIC event builder has copied the data from the buffer beginning
atpci address and that the crate is free to reuse this region of memory.

7 VME address maps

The VME base addresses of various modules are set through the ODB in the tree under/Equip-
ment/Crate n/Settings . These settings must, in general, match the hardware settings on
the boards. The current address maps are shown in Table 2.

8 Data format

The high-level data format is described by appendix A of the MIDAS manual,

http://midas.triumf.ca/doc/Midasformat.html .

It is recommended, but not strictly necessary, to use the MIDAS libraries to access the data within
these files. In all cases, the data have been swapped if necessary to little-endian byte order, cor-
responding to the Intel architecture. 32-bit bank structures are used, since the number of bytes in
a bank frequently exceeds 64K. Not all defined banks are necessarily present in any given event,
depending on various ODB settings and on whether or not crate 4 participated. The following
types of banks are currently defined:

• Raw TDC400
Bank name: TDCn
Data structure: a sequence of 64 bit words formatted as follows:

| Time (16 bits)| Input bitmap (48 bits)|

• CAEN TDC
Bank name: CAEn
Data structure: a sequence of 32 bit words formatted as shown below (Reproduced from p.
27 of the CAEN V767 User’s Manual.):

7

Module Base addr. Addr. mode User/supervisor
Crate 1

TDC400 1 0x08000800 A32 U/S
TDC400 2 0x08001000 A32 U/S
TDC400 3 0x08001800 A32 U/S

Crate 2
TDC400 4 0x08002000 A32 U/S
TDC400 5 0x08002800 A32 U/S
TDC400 6 0x08003000 A32 U/S
TDC400 7 0x08003800 A32 U/S

Crate 3
CAEN TDC 1 0x08000000 A32 U/S
CAEN TDC 2 0x08010000 A32 U/S
CAEN TDC 3 0x08020000 A32 U/S
SIS FIFO 0x08030000 A32 U/S
VMIC I/O 0x0800 A16 S
DL403 clock 0xA000 A16 U
DL401 ADC 1 0xB000 A16 U
DL401 ADC 1 0x08010000† A32 U
DL401 ADC 2 0xB100 A16 U
DL401 ADC 2 0x08200000† A32 U
DL401 ADC 3 0xB200 A16 U
DL401 ADC 3 0x08300000† A32 U
DL401 ADC 4 0xB300 A16 U
DL401 ADC 4 0x08400000† A32 U

Crate 4
WFD 1 0xE0100000 A32 U/S
WFD 2 0xE0200000 A32 U/S
WFD 3 0xE0300000 A32 U/S
WFD 4 0xE0500000 A32 U/S
WFD 5 0xE0400000 A32 U/S
WFD 6 0xE0700000 A32 U/S
MTDC 0xE8000000 A32 U/S

Table 2: Base addresses forµCap DAQ electronics. († A32 base addresses for the DL401 ADCs
are configured by the DAQ software rather than in the hardware.)

8

•
•

•

����������� �
	��

 ��	 �������������������
�

����������� �
	��

��� �����������
���������
���

����������� �
	��

 ��	 �����
�������
������	��������
������������

 �!�"� #�$�%�&�$

'�(�%�)�) �*

+

,

,

+

,

,

(% !� &
-�.

 �/�)�$�)�0�1 .
 &

232

• Compressor FIFO
Bank name: CMPn
Data structure: a sequence of 32 bit words formatted as described on pp. 6-7 of R. Prieels,
“Manual for COMET,”:

|BAxx|xxxx|tttt|tttt|tttt|tttt|tttt|tttt|

“where the values of B and A are the MSB specifying the group, xxxxxx indicates the FPGA
number and the 24 bits t give the time in units of 30 ns.”

• Struck DL401 flash ADC
Bank name: ADCn
Data structure: a sequence of 32 bit words consisting of interleaved ADC values from the
four channels on the module, formatted as

| ADC 1 (8 bits)| ADC 2 (8 bits)| ADC 3 (8 bits)| ADC 4 (8 bits)|

• rawg − 2 WFD
Bank name: WFn{T,B}, where “T” and “B” refer to the top and bottom halves of the
module.
Data structure: Divided into the following sub-banks: phase 0 ADC, phase 0 TDC, phase
1 ADC, phase 1 TDC. Each sub-bank then has the following structure:

– 32 bits: VME base address of this portion of the module

– 32 bits: Starting address of data within module

– 32 bits: Number of bytes of data needed

– 32 bits: Number of bytes of data actually read

– Actual data– The 8-bit ADC samples within a phase are arranged in reverse time order.
The 32-bit TDC words are also arranged in reverse time order; they have the following
structure:

9

| Time (16 bits)| Disc. 0 (4 bits)| Disc. 1 (4 bits)| Disc. 2 (4 bits)| Disc. 3 (4 bits)|

• Fittedg − 2 WFD
Bank name: FEn{T,B}
Data structure: 16 bytes for each fitted WFD event, formatted as:

– 32 bits: raw event number

– 32 bits: time

– 16 bits: area

– 8 bits: height

– 8 bits: width

– 8 bits: pedestal

– 8 bits: discriminator

– 8 bits: quality

– 8 bits: 0xff

• g − 2 MTDC
Bank name: MTDC (only one is allowed)
Data structure:

– 32 bits: VME base address of MTDC

– 32 bits: Number of bytes of MTDC data to follow

– 32 bit words in the following format (reproduced from p. 6 of E. Hazen and G. Varner,
g − 2 note 281):

10

9 Source code

CVS is used for version control. The CVS repository is at

mucap@kaon.physics.berkeley.edu:/home/mucap/cvsroot ,

and the module name isdaq . This manual is even included in the CVS repository.

10 Electronic logbook

An electronic logbook based on Stefan Ritt’s ELOG package is running at the URL

http://pc3608.psi.ch:8080 .

The PSI firewall blocks Internet access to all but a very few ports. Consequently, to use this
interface remotely, it is necessary to set up an ssh tunnel by running the command

ssh -L 8080:pc3608.psi.ch:8080 data@pc3608.psi.ch

and logging in with the usual password. The logbook may then be accessed from a browser running
on your local machine ashttp://localhost:8081 . A similar tunnel may be established,
replacing 8080 by 8081, to access the MIDAS control interface remotely.

11

