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Abstract


Nuclear muon capture on the proton and3He is considered both within and beyond the standard
model in terms as general as is possible. Explicit and precise analytic expressions for all possible
observables are given, assuming only a Dirac neutrino in the limit of vanishing mass. These results
allow both for precision tests of the standard model and new physics, as well as for the assessment
of the potential physics reach of experiments designed to measure specific observables. Using these
expressions, stringent constraints can already be inferred from a recent precision measurement of
the statistical capture rate on3He. Likewise, similar constraints should follow the completion of
a precision measurement in progress of the singlet capture rate on the proton. 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction


Over the last fifteen years, muon physics has regained its rightful place in particle
physics, ranging from intermediate energies well into the high energy frontier in the
foreseeable future with the advent of muon colliders. Given the availability of intense
muon beams at different laboratories, as well as new and much efficient experimental
and detector techniques, intermediate energy muon physics has moved into the realm of
precision studies of the standard model, with the hope of possibly unravelling some tell-
tale sign for the physics which must lie beyond it in ways complementary to present day
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high-energy experiments at the colliders. Such studies include both purely leptonic as well
as semileptonic electroweak processes, the much studied field of nuclear muon capture (for
reviews, see [1–3]) belonging to the latter class.


When the aim of such electroweak processes in nuclei is to study particle physics
issues, the uncertainties inherent to nuclear structure modeling have to be disposed of
to the largest extent possible, leaving essentially only the lightest of nuclei available,
beginning with the proton and next the stable 3-nucleon bound state,3He, since indeed
the quantum wave functions for the latter system are by now very well understood [4,5].
An additional bonus in the case of these two systems is that they both provide the unique
occurrence of a (mother–daughter) pair of nuclei which define a spin 1/2 isospin doublet,
namely the proton and neutron, and3He and3H, respectively. Hence in the limit of exact
isospin symmetry, some of the various phenomenological nuclear form factors which
parameterize matrix elements of these states are related to one another, while for spin
1/2 states, the numbers of these form factors remains small. This is how through CVC, the
experimental determination of electromagnetic form factors from electron scattering may
be translated into knowledge of the related nuclear form factors for the charged electroweak
vector current. In other words, hiding our ignorance of the microscopic dynamics at the
quark level into a phenomenological parameterization in terms of form factors, it remains
possible to consider predictions of observables which do not require models for nuclear
structure. In the field of nuclear muon capture, this description corresponds to the so-called
“elementary particle model” approach to nuclear electroweak processes [6], which will be
used in this paper.


One of the main motivations for studying nuclear muon capture, especially in light
nuclei,3 has always been to measure the induced pseudoscalar nucleon form factor
gP (q


2), certainly the least well-known of all nonvanishing nucleon form factors with
a combined uncertainty which has stood at 22% for the last twenty years [7]. The urgency
of this specific issue has recently become more pressing, mainly for two reasons. On the
one hand, based on the fundamental chiral symmetries which, even though dynamically
broken, survive nonlinearly in the nonperturbative low energy regime of the theory for the
strong interactions among quarks, namely quantum chromodynamics, definite predictions
for gP with a precision of a few percents or better have been achieved [8–11]. The
experimental confirmation of the expected value is thus a crucial low-energy test of our
basic concepts for the theory of the strong interactions. On the other hand, a new 8%
precise measurement ofgP has been completed in the intervening years, using the rare
process of radiative muon capture on hydrogen [12,13]. The unsettling fact is that the value
obtained differs significantly (by a 4.2σ deviation) from the expected value. No theoretical
explanation for this discrepancy having been found so far (see for example Ref. [11] for
references), the issue thus remains open and this difficult experiment shrouded with some
feeling of uncertainty. Indeed, the general understanding of the dynamical breaking of the


3 In heavier nuclei, the same axial electroweak probe enables to address the issue of hadronic coupling and
mass renormalization in the nuclear medium.
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chiral symmetries of QCD has so far never been found lacking in essentially any other
low-energy process.


During the same period, another precision measurement of nuclear muon capture on3He
has also been completed [14]. In spite of its remarkable precision of 0.4% for the statistical
capture rate atλstat


exp= 1496± 4 s−1, whose value is found to be in perfect agreement with


the theoretical predictionλstat
theor= 1496± 21 s−1 [4,5], the ensuing value forgP , though at


exactly the expected level, is still precise to only 19% [15]. One should add however that
in terms of the corresponding pseudoscalarnuclearform factorFP (q2) for 3He, the same
experimental result translates [14,16–19] into a 13% precise test of the prediction based on
PCAC, the symmetry which together with CVC has historically been the precusor for the
chiral symmetries of QCD. Even though these results are still a long way off the precision
reached by the latest theoretical analyses [8–11], they stand as a clear confirmation of the
basic concepts involved in the chiral symmetry aspects of the problem.


Independently of this specific situation with respect to the value forgP , if one is willing
to use the theoretically expected number, the latest ordinary muon capture experiment on
3He has reached such a level of precision that other tests of the standard model (SM)
for the electroweak interactions become possible [17–19], some of which prove to be
quite stringent for possible new physics beyond the SM. Moreover, given the above issues
surrounding the value ofgP , as well as the precision of its theoretical prediction, a new
effort has been launched [16,20] in order to measure the singlet rate of ordinary muon
capture on hydrogen in a gas target (to avoid the complications due to molecular binding
effects), hopefully to a precision of 0.5% to 1%.4 Here again, beyond the initial aim
towards the value ofgP , this level of precision should also enable tests of the SM. However,
in order to infer a value forgP from any experiment, analytic expressions for observables
whose numerical evaluation is to the required standard of precision should be available.
This is the purpose of the present work, much in continuation of that of Refs. [4,5].


This paper considers the ordinary nuclear muon capture process on a spin 1/2 isospin
doublet in terms as general as is possible. Not only are all possible effects existing within
the SM included in the present analysis, but any possible contributions which may appear
beyond the SM due to new interactions are accounted for as well through an effective four-
fermi quark–lepton interaction which describes all possible scalar, pseudoscalar, vector,
axial and tensor couplings. Indeed, given the momentum transfer involved, much less than
any of the mass scales characterizing such possible interactions, an effective four-Fermi
interaction at the quark–lepton level is perfectly justified.


Previous analyses over the years, beginning with Ref. [21] pointing out the existence of
the hyperfine effect in the capture rates because of maximal(V − A) parity violation,5


have all only included vector and axial interactions through the usual(V − A) charged
electroweak coupling, and only some of these works have considered the possibility of


4 The principle of the experiment lies in the comparison between the muon disappearance rates, through the
usual electron decay mode, for both positive and negative muons, only the latter being subject to nuclear capture.
Since this experiment does not measure the neutron recoil energy distribution, it has no handle on the neutrino
energy spectrum nor on its mass.


5 The same effect arises of course also for a pure(V +A) coupling.
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so-called second-class currents. A handful of observables have been computed, and then
not always in analytic form [4–6,11,15,22–26]. In contradistinction, the present work
does not involve any non relativistic expansion and allows for all possible contributions,
including CP- or T-odd effects through complex form factors and coupling coefficients
in the effective interaction. The only approximations made are, on the one hand, that the
neutrino mass is taken to vanish and that the muon leptonic flavour is conserved, and on
the other hand, that nuclear recoil effects associated to the scalar, pseudoscalar and tensor
interactions beyond the SM are also ignored, since the latter couplings are necessarily small
on their own and would in turn multiply small nuclear recoil contributions. Moreover, all
possible observables become available through our results, hopefully making it easier to
assess their sensitivity to whatever parameter or physical input a specific experiment using
ordinary nuclear muon capture on these nuclei would wish to address. This point will
explicitly be illustrated with some of the obtained observables, in the context of the two
experiments mentioned previously.


Most of these observables require correlation measurements using polarized states for
the initial muonic atom, while another subset requires to measure also the polarization
states of the outgoing nucleus and/or neutrino. These are certainly experimental challenges
bordering on the impossible for certain of these polarization observables, but some
experimentalists take up the task. For example, there exists a first-generation experiment
[27] which measures the vector analyzing power of the outgoing triton in polarized muon
capture on3He. Even though the preliminary results are yet not precise enough to be of
use in a theoretical analysis, they certainly demonstrate that this specific difficult challenge
can be met.


More specifically, the physics reason for these difficulties is that during its atomic
cascade down to the muonic atom ground state, the muon, even if initially polarized,
suffers depolarization effects to a great extent, leaving over only a small fraction of
its initial polarization [1–3,28–30]. Once in the ground state, the degree of polarization
may be increased again by external means [27,31], but not to any large degree and less
than theoretically anticipated [32]. In fact, both the initial nucleus and muon need to be
polarized in order to end up with a muonic atom ground state polarized to any degree
[33]. Hence, because of these atomic physics issues, even though the expressions for all
observables are now available in analytic form, any experiment which consists not only in
a rate measurement is in essence extremely difficult to perform when aiming towards the
demands of great precision.6


The outline of the paper is as follows. In the next section, the general parameterization of
the capture amplitude is described, and the ensuing expressions for observables explicitly


6 In this respect, the recent proposal of Ref. [34] appears to be totally unrealistic, the more so since some of
the possible contributions which have not been included in that analysis, such as recoil order effects, could also
lead to contributions to the massive neutrino polarization states. Such effects are all accounted for in our analysis
in the limit of a massless neutrino, including the possibility ofT -violating couplings and currents other thanV
andA. Note also that due to helicity constraints, transverse contributions to a massive neutrino polarization state
produced in muon capture through onlyV andA couplings are necessarily suppressed by the ratio of the neutrino
mass to its energy, and are thus unobservable.
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given. In Section 3, the situation for3He is then considered in detail, first within the SM,
and then beyond the SM, each time by using the experimental result of Ref. [14] for the
statistical capture rate and also by illustrating the potential physics reach of some other
final state distribution which does not entail a correlation observable except for an initially
polarized muonic atom. In Section 4, the same considerations are applied again to the case
of capture on the proton, based on the optimistic aim of a 0.5% precision in the result for
the singlet capture rate [16,20]. Section 6 then translates some of the limits for physics
beyond the SM obtained from the previous considerations, into limits for parameters of
some specific models for such physics. The conclusions end our discussion, while further
information relevant to the analysis is provided in three separate appendices.


2. Muon capture observables


2.1. Kinematics


Our notations for kinematics are as follows. Letmµ, M1 andM2 be the masses of the
muon, and of the initial and final nuclei, respectively, withM = (M1 +M2)/2 the mean
value of the latter two. As mentioned previously, the capture process is considered in the
limit of a vanishing neutrino mass and no leptonic flavour mixing. Initially, the muon and
nucleus form a muonic atomic bound state at rest, whose total rest-mass is denoted


√
s,


which differs frommµ+M1 by the binding energy−(αZ)2µ/2,µ being the reduced mass
of the bound state (expressions are given in units such thatc = 1 andh̄= 1 throughout).
Let then Ep be the momentum of the outgoing nucleus (−Ep is thus that of the outgoing
neutrino),ω the energy of that nucleus andν the energy of the neutrino, such that we have


ν = | Ep|, √
s = ν +ω, ν = s −M


2
2


2
√
s
, ω= s +M


2
2


2
√
s
. (1)


With respect to polarization states, letŝ1 denote the normalized polarization vector of
the initial spin 1/2 nucleus, as measured in its rest-frame, andŝ2 that of the final spin
1/2 nucleusalso measured in its rest-frame. Similarly, ŝµ denotes the muon normalized
polarization vector in its rest-frame, whileλ=±1 is the massless Dirac7 neutrino helicity.


Finally, the capture distribution is given by the expression,


dΓλ
dΩp̂
= |ψc(0)|


2C


64π2mµM1


ν√
s
|Mλ|2. (2)


Here, dΩp̂ is the element of solid angle associated to the outgoing nucleus of momentum
Ep,Mλ is the capture amplitude associated to a neutrino of helicityλ, ψc(0) is the 1S state


7 In practice, there is no difference between a massless Dirac or Majorana neutrino in the case of purely(V −A)
or (V + A) interactions, but the distinction becomes relevant as soon as other interactions are turned on, as
done in this paper. By this assumption of a massless Dirac neutrino, we exclude the possibility of interference
contributions between processes in which either the neutrino spinor fieldν(x) or its charge conjugateνc(x)would
couple in the amplitudesto the same quarks and leptons rather than their antiparticles, namely it is assumed that
the muon leptonic flavour is conserved in the massless neutrino limit.
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muonic atom Coulomb wave function measured at the origin, andC is a reduction factor
which accounts for the effects of the nuclei finite size through the overlap of the muon
and neutrino wave functions with the different nuclear electric and electroweak charge
distributions of finite spatial extent. The detailed evaluation of this reduction factorC is
discussed in Appendix A both for3He and for the proton.


2.2. The amplitude


The parameterization for the effective interaction associated to muon capture, at the level
of theu andd quarks, is taken to be


4
g2


8M2Vud
∑


η1,η2=+,−


[(
hVη1η2


)∗
ν̄µγ


µPη1µ d̄γµPη2u+
(
hSη1η2


)∗
ν̄µPη1µ d̄P−η2u


+ 1
2


(
hTη1η2


)∗
ν̄µσ


µνPη1µ d̄σµνP−η2u
]
. (3)


Here,P± = (1± γ5)/2 are the chirality projectors, andg, M andVud are arbitrary real
parameters which in the limit of the SM reduce to those of that model, namelyM =MW ,
g2/8M2 = GF/


√
2 andVud = cosθc being the Cabibbo–Kobayashi–Maskawa (CKM)


quark flavour-mixing matrix element, in which case all coefficientsh
S,V ,T
±± also vanish


except forhV−− = 1. Finally, the coefficientshV,S,Tη1η2
are arbitrary complex coefficients


associated to vector, scalar and tensor interactions, withη1 (respectively,η2) being the
muon (respectively,d-quark) chirality, equal to the neutrino (respectively,u-quark) one
for vector interactions and opposite to it for scalar and tensor interactions (the “∗” symbol
denotes complex conjugation throughout). Finally, without loss of generality, one may set
hT++ = 0= hT−−, because of the identityσµνγ5 = iεµνρσ σρσ /2 which implies that the
terms multiplied byhT++ andhT−− simply vanish identically.


This choice of parameterization is inspired by the one used (in the charge exchange
form) for muon decay in terms of coefficientsgS,V ,T±± , with the first (respectively, second)
lower index being the chirality of the electron (respectively, muon) [35]. Note that a similar
effective four-Fermi interaction may be given forβ-decay in terms of coefficientsf S,V ,T±±
with the electron then playing the role of the muon in (3).


To express the amplitude for nuclear muon capture in terms of the above parameteri-
zation, one also requires the hadronic matrix elements of the relevant quark operators in
terms of the nuclear bound states. For this purpose in the case of a spin 1/2 isodoublet, let
us introduce the spinorψ1 for the Dirac field of the spin 1/2 nucleus on which the muon is
captured, whileψ2 is the Dirac spinor for the final spin 1/2 nucleus. In momentum space,
with qµ = pµ2 − pµ1 being the momentum transfer of the process andp


µ
2 (respectively,


p
µ
1 ) being the momentum of the final (respectively, initial) nucleus, we have the following


parameterization in terms ofq2-dependent form factors:


〈2|dγµu|1〉 =ψ2


(
FV γµ + iFMσµν


qν


2M
+ FS qµ


2M


)
ψ1, (4)


〈2|dγµγ5u|1〉 =ψ2


(
FAγµγ5+ FP γ5


qµ


mµ
+ iFT σµνγ5


qν


2M


)
ψ1, (5)
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〈2|du|1〉 =ψ2(GS)ψ1, (6)


〈2|dγ5u|1〉 =ψ2(GP γ5)ψ1, (7)


〈2|dσµνu|1〉 =ψ2(GT σµν)ψ1, 〈2|dσµνγ5u|1〉 =ψ2(GT σµνγ5)ψ1, (8)


where|1〉 and|2〉 denote the initial and final quantum nuclear states, respectively.
This notation for form factors is the one used for the3He-3H case, while it is more


conventional in the proton–neutron case to denote the form factors for the vector and axial
quark currents asgV , gM , gS , gA, gP andgT , respectively forFV , FM , FS , FA, FP and
FT . We shall thus follow that convention in the case of the proton, and keep nevertheless
the notationGS , GP andGT for the form factors associated to the scalar, pseudoscalar
and tensor quark operators even in the case of the proton. However, all expressions for
observables in this section will be given in terms of theFV,M,S,A,P ,T form factors. Note
also that the contribution of the induced pseudoscalar form factorFP has conventionally
been normalized to the muon mass, while those of all other recoil order form factors are
normalized with respect to twice the mean nuclear mass 2M.


In the case ofT -invariant interactions, both the effective coupling coefficientsh
S,V ,T
±± as


well as the nuclear form factors are all real quantities under complex conjugation. However
in the present analysis, this restriction is not imposed, and all these parameters are assumed
to takea priori complex values.


For the vector and axial current quark operators, one distinguishes first- and second-
class form factors,FV , FM , FA andFP in the first case, andFS , FT in the second case. On
the basis of CVC, the values for the electroweak vector and induced magnetic form factors
may be related to those of the electromagnetic electric and magnetic form factors of3He
and3H, or of the proton and the neutron. The value of the axial form factorFA at zero
momentum transfer follows from theβ-decay rate either of3H or of the neutron. Its value
at nonvanishing momenta transfers requires knowledge of itsq2-dependency inferred from
neutrino or pion electroproduction experiments. Finally, through PCAC, the value of the
last first-class form factor, the induced pseudoscalar one, may be expressed as8


FPCAC
P


(
q2)= mµ(M1+M2)FA(q


2)


m2
π − q2 = mµfπgπN(q


2)


m2
π − q2 , (9)


wheremπ is theπ± mass,fπ its decay constant, andgπN(q2) its nuclear coupling to the
two nuclear states of massesM1 andM2. In the limit of exact isospin symmetry, which
implies also exactG-parity invariance, the values for the second-class form factorsFS


andFT may be shown to vanish identically. Hence, one expects deviations from zero for
these form factors (normalized toFV or FA) of only a few percent, as given by the ratio
(md −mu)/ΛQCD of u- andd-quark masses to the QCD scale for example, or the ratio
(mn − mp)/(mn + mp) in terms of the neutron and proton masses. Bag model or QCD
sum rule evaluations of these form factors in the case of the (proton, neutron) doublet do
indeed bear out such an expectation [38–41]. In the same manner, one could wonder about


8 To be precise, these expressions forFP assume implicitly that bothq2-dependencies forFA(q2) and
gπN(q


2) are identical [36]. Note also that through relations such as these, any experiment leading to a precise
value forFP would also imply a precise value for the associated pion–nucleus coupling constant [37].
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the effects of isospin symmetry breaking for theFV andFM form factors obtained through
CVC. In this particular case, thanks to the Ademollo–Gatto theorem [42,43], isospin
breaking corrections are only of quadratic order in the ratio(md − mu)/ΛQCD, hence
negligible for our purposes. Let us also recall that CVC has been very well established
through precision studies inβ-decay [44], and that even though limits exist on second-class
form factors from correlation experiments inβ-decay, the stringency of these constraints
are nowhere close to the theoretically expected values forgS or gT [35].


In the matrix elements for the scalar, pseudoscalar and tensor quark operators, we have
chosen not to include recoil order induced contributions, for the reasons mentioned already
in the Introduction. The values for the genuine scalar, pseudoscalar and tensor form factors
GS , GP andGT , cannot be inferred from any experiment yet. One thus has to rely on
specific model calculations for QCD dynamics, such as the bag model or QCD sum rules.
However, no such results are available at present, and one may only reasonably guess that
these form factors should take values on the order of unity, within a factor which at worst
could be of order ten.


Hence, even though the parameterization of the nuclear matrix elements of the relevant
quark operators in terms of form factors is only a phenomenological representation of our
ignorance of the microscopic nonperturbative quark dynamics, this approach to nuclear
muon capture allows nevertheless for explicit predictions independently of the details of
nuclear models, relying only on the results of other experiments and the power of symmetry
principles [6].


In terms of this parameterization of the nuclear state matrix elements, the effective muon
capture amplitude at the nuclear level is given by


Mλ = g2


8M2Vud


×
∑


η1,η2=+,−


[(
hVη1η2


)∗
ν̄µγ


µ(1+ η1γ5)µ


×ψ2


[
γµ(FV + η2FAγ5)+ qµ


2M


(
FS + η2


2M


mµ
FP γ5


)
+ iσµν


qν


2M
(FM + η2FT γ5)


]
ψ1


+ (hSη1η2


)∗
ν̄µ(1+ η1γ5)µ ψ2(GS − η2GPγ5)ψ1


+ 1


2


(
hTη1η2


)∗
ν̄µσ


µν(1+ η1γ5)µ ψ2GT σµν(1− η2γ5)ψ1


]
. (10)


2.3. The method of calculation


The remainder of the calculation requires now the evaluation of|Mλ|2. If one were to
proceed by “brute force”, using the usual trace techniques for such calculations, one would
quickly run into unmanageable expressions, because of the many contributions stemming
from all the interactions represented in the amplitudeMλ. Actually, it is possible in the
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present case to take advantage of the fact that the initial system is at rest, and that to a very
good approximation the initial muon and nucleus may be considered to be also at rest.9


For that purpose, it turns out that the Dirac representation of the Dirac–Clifford algebra
of γ µ matrices is the best suited for the problem. Plane wave solutions to the massive Dirac
equation are then of the following form, for “positive” and “negative” energy solutions,
respectively (our Minkowski metric signature convention is(+−−−)):


u
(Ek, ŝ)= 1√


k0+m(k
µγµ +m)


(
χ+(ŝ)


0


)
,


v
(Ek, ŝ)= 1√


k0+m(−k
µγµ +m)


(
0


χ−(ŝ)


)
, (11)


whereχ±(ŝ) are bi-spinors such that


Eσ · ŝ χ±(ŝ)=±χ±(ŝ), χ
†
±(ŝ)χ±(ŝ)= 1, (12)


with σ i (i = 1,2,3) the usual Pauli matrices, whilês is a unit vector in three dimensions
which in fact corresponds to the spin polarization vector of the particle (see Appendix B).
Further properties of these bi-spinors are


χ+(−ŝ)= iχ−(ŝ), χ−(−ŝ)= iχ+(ŝ), (13)


χη(ŝ)χ
†
η (ŝ)= 1


2[1+ ηEσ · ŝ], η=±. (14)


In fact, it is only the latter relation which is of essential use in the calculation of|Mλ|2.
Even though this is not important for that calculation, it is also possible to give the ex-


plicit expressions for these bi-spinors. Associated to the spherical angular parameterization
of the unit vector̂s,


ŝ:
 sinθ cosϕ


sinθ sinϕ
cosθ


 , (15)


one has


χ+(ŝ)=
(


e−iϕ/2 cosθ/2
eiϕ/2 sinθ/2


)
, χ−(ŝ)=


(−e−iϕ/2 sinθ/2
eiϕ/2 cosθ/2


)
. (16)


Finally in the case of solutions to the massless Dirac equation, “positive” and “negative”
energy plane wave solutions of helicityλ=±1 and momentumEk are given by


u
(Ek,λ)=√k0


(
χλ(k̂)


λχλ(k̂)


)
, v


(Ek,λ)=√k0


(
χλ(k̂)


λχλ(k̂)


)
, (17)


where of coursêk = Ek/|Ek|.
9 This assumption amounts to ignoring those small relativistic corrections which are related to the velocities of


the bound muon and nucleus, which in the present case is indeed totally justified. A fully satisfactory relativistic
treatment of such a bound state problem in QED is still not available, and cannot be used here to estimate small
corrections which in any case will be at most of order(αZ)2, namely the squared velocity of the bound muon.
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In order to apply these considerations to the capture amplitude (10), let us denote by
χµ(ŝµ), χ1(ŝ1), χ2(ŝ2) andχλ(−p̂) the bi-spinors associated to the muon, the initial and
final nuclei, and the neutrino, respectively (for the first three states, they thus correspond
to bi-spinors ofχ+(ŝ) type). After substitution in (10), the capture amplitude associated to
a massless neutrino of helicityλ then reduces to the expression:


Mλ =
(
g2


8M2


)
Vud


√
4mM1


√
ν


2
√
s


×2
{
χ


†
λ χµ χ


†
2


[
H
(S)
λ +


(
H
(P)
λ −H(A)


λ


)
p̂ · Eσ ]χ1


+ λχ†
λ σ


i χµ χ
†
2


[
H
(V )
λ i(p̂× Eσ)i −H(A)


λ σ i
]
χ1


}
, (18)


with coefficientsH(S,P,V ,A)
λ defined by the following relations:


H
(S)
λ =


( ∑
η2=±


hVλη2


)∗
G
(1)
V +


( ∑
η2=±


hS−λη2


)∗
G
(1)
S − 2


(
hT−λλ


)∗
G
(1)
T , (19)


H
(P)
λ =


( ∑
η2=±


η2h
V
λη2


)∗
G
(1)
A +


( ∑
η2=±


η2h
S−λη2


)∗
G
(1)
P − 2λ


(
hT−λλ


)∗
G
(2)
T , (20)


H
(V )
λ =


( ∑
η2=±


hVλη2


)∗
G
(2)
V − 2


(
hT−λλ


)∗
G
(1)
T , (21)


H
(A)
λ =


( ∑
η2=±


η2h
V
λη2


)∗
G
(2)
A − 2λ


(
hT−λλ


)∗
G
(2)
T , (22)


in which the following combinations of form factors are introduced:


G
(1)
V =


(√
s −M2


)[
FV −


√
s −M1


2M
FM


]
+ (√s +M2


)[
FV +


√
s −M1


2M
FS


]
, (23)


G
(1)
A =


(√
s −M2


)[
FA −


√
s −M1


mµ
FP


]
+ (√s +M2


)[
FA +


√
s −M1


2M
FT


]
, (24)


G
(2)
V =


(√
s −M2


)[
FV + M1+M2


2M
FM


]
, (25)


G
(2)
A =


(√
s +M2


)[
FA − M1−M2


2M
FT


]
, (26)


G
(1)
S =


(√
s +M2


)
GS, (27)


G
(1)
P =


(√
s −M2


)
GP , (28)


G
(1)
T =


(√
s −M2


)
GT , (29)


G
(2)
T =


(√
s +M2


)
GT . (30)


The calculation of|Mλ|2 then proceeds using the trace properties in (14). The advantage
of the above approach is that the combinations of form factors and coupling coefficients
which are relevant appear from the start, ever before proceeding to the calculation of traces.
Were one to first calculate the traces as is usual, the task would quickly become impossible
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in the general case considered here (presumably, this is the reason why only numerical
expressions were given in Ref. [23], even though the situation considered there was far
less general). Still, using the present approach, the length of the calculation is of some
importance. Note also that no nonrelativistic expansion in the amplitude is effected at
any stage of the calculation, in contradistinction to all other analyses which are based on
Ref. [6] in which such an expansion in 1/M is indeed applied.


Finally, the capture distribution is thus given by


dΓλ
dΩp̂
= |ψ(0)|


2


32π2


(
g2


8M2


)2


V 2
ud


ν2


s
Rλ with (31)


Rλ = (1− λp̂ · ŝµ)
{
C
(µ)
λ


(
1+ (p̂ · ŝ1)(p̂ · ŝ2)


)
+D(µ)λ


(
(ŝ1 · ŝ2)− (p̂ · ŝ1)(p̂ · ŝ2)


)+E(µ)λ p̂ · (ŝ1× ŝ2)
}


+ (1− λp̂ · ŝ1)
{
C
(1)
λ


(
1+ (p̂ · ŝµ)(p̂ · ŝ2)


)
+D(1)λ


(
(ŝµ · ŝ2)− (p̂ · ŝµ)(p̂ · ŝ2)


)+E(1)λ p̂ · (ŝµ × ŝ2)
}


+ (1+ λp̂ · ŝ2)
{
C
(2)
λ


(
1− (p̂ · ŝµ)(p̂ · ŝ1)


)
+D(2)λ


(
(ŝµ · ŝ1)− (p̂ · ŝµ)(p̂ · ŝ1)


)+E(2)λ p̂ · (ŝµ × ŝ1)
}
, (32)


in which the following final definitions apply:


C
(µ)
λ =


∣∣H(S)
λ


∣∣2+ ∣∣H(P)
λ


∣∣2− 2
∣∣H(V )


λ + λH(A)
λ


∣∣2, (33)


C
(1)
λ =−2λRe


(
H
(S)
λ


(
H
(P)
λ


)∗)+ 2
∣∣H(V )


λ + λH(A)
λ


∣∣2, (34)


C
(2)
λ =+2λRe


(
H
(S)
λ


(
H
(P)
λ


)∗)+ 2
∣∣H(V )


λ + λH(A)
λ


∣∣2, (35)


D
(µ)
λ =


∣∣H(S)
λ


∣∣2− ∣∣H(P)
λ


∣∣2, (36)


D
(1)
λ =−2 Re


((
H
(S)
λ − λH(P)


λ


)(
H
(V)
λ + λH(A)


λ


)∗)
, (37)


D
(2)
λ =−2 Re


((
H
(S)
λ + λH(P)


λ


)(
H
(V)
λ + λH(A)


λ


)∗)
, (38)


E
(µ)
λ = 2 Im


(
H
(S)
λ


(
H
(P)
λ


)∗)
, (39)


E
(1)
λ =−2λ Im


((
H
(S)
λ − λH(P)


λ


)(
H
(V )
λ + λH(A)


λ


)∗)
, (40)


E
(2)
λ =−2λ Im


((
H
(S)
λ + λH(P)


λ


)(
H
(V )
λ + λH(A)


λ


)∗)
. (41)


Note that these results show thatT -odd effects can only appear through the triple
correlation coefficients ofE(µ,1,2)λ type, related to contributions which are pure imaginary
under complex conjugation and involving necessarily always at least two polarization
vectors.


2.4. Capture distributions and final state polarization


The calculation thus leads to the capture distribution as given in (32). For a massless
neutrino of given helicityλ (i.e. a Weyl neutrino, or a neutrino whose helicity is measured!),
(32) gives the final expression. For a massless Dirac neutrino produced with either helicity
(which is then not measured), one needs still to sum the result overλ =±1. Finally, and
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independently of the neutrino sector, in order to obtain the unpolarised nuclear final state
distribution, one simply needs to sum the two results obtained from (32) forŝ2 = ŝ0 and
ŝ2=−ŝ0. Since the result (32) is at most linear inŝ2, this amounts to settinĝs2= E0 and to
multiply the result (32) by a factor two.


In general, (32) thus has the parameterization


Rλ =Nλ + ŝ2 · EDλ, (42)


where the expressions for the coefficientsNλ and EDλ may be read off directly from (32).
The capture distribution of the final state nucleus is thus given by


dΓλ
dΩp̂
= |ψ(0)|


2


32π2


(
g2


8M2


)2


V 2
ud


ν2


s
2Nλ, (43)


while the final state spin 1/2 nucleus has the following average polarization vector,


〈ŝ2〉λ = 1


Nλ
EDλ. (44)


For example, taking an initially unpolarized state withŝµ = E0 = ŝ1, the average
polarization of the final nucleus is given by


〈ŝ2〉(unpolarized)
λ = λ C


(2)
λ


C
(µ)
λ +C(1)λ +C(2)λ


p̂. (45)


Hence, a transversally polarized final nucleus requires an initially polarized muonic atom.
However, all the results discussed so far refer to polarization states defined in terms of


the individual polarization vectorŝsµ, ŝ1 and ŝ2, rather than the hyperfine states(S,m)
of the initial muonic atom, with (S = 1, m = ±1,0) and (S = 0, m = 0). As explained
in Appendix B, it is of course possible to use the above results to determine the final
state distributions and polarizations associated to each of these hyperfine states. Since it
is difficult to imagine how the final state polarization of the neutron or3H could ever be
measured to any degree of precision, here only the relevant expressions for the hyperfine
capture distributions are presented.


Given the hyperfine statesS = 0,1 and their projectionsm = 0 andm = 0,±1 along
some arbitrary quantization axis, the associated hyperfine capture distributions are given by


dΓ (S,m)λ


dΩp̂
= |ψ(0)|


2


16π2


(
g2


8M2


)2


V 2
ud


ν2


s
R
(S,m)
λ , with (46)


R
(1,±1)
λ = [(C(µ)λ +C(1)λ


)+ 2
3


(
C
(2)
λ +D(2)λ


)]∓ λ(C(µ)λ +C(1)λ
)
P1(cosθ)


− 2
3


(
C
(2)
λ +D(2)λ


)
P2(cosθ), (47)


R
(1,0)
λ = [(C(µ)λ +C(1)λ


)+ 2
3


(
C
(2)
λ +D(2)λ


)]+ 4
3


(
C
(2)
λ +D(2)λ


)
P2(cosθ), (48)


R
(0,0)
λ = (C(µ)λ +C(1)λ


)+ 2
(
C
(2)
λ +D(2)λ


)− 4D(2)λ , (49)


where the usual Legendre polynomials are


P1(cosθ)= cosθ, P2(cosθ)= 3
2 cos2 θ − 1


2, (50)
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while θ is the angle between the spin quantization axis and the normalized momentum
vectorp̂ of the outgoing spin 1/2 nucleus.


In particular, the statistical capture distribution is given as in (46) with the coefficient
R
(S,m)
λ then obtained from


Rstat
λ = 1


4


[
R
(1,+1)
λ +R(1,−1)


λ +R(1,0)λ +R(0,0)λ


]
=C(µ)λ +C(1)λ +C(2)λ =


∣∣H(S)
λ


∣∣2+ ∣∣H(P)
λ


∣∣2+ 2
∣∣H(V)


λ + λH(A)
λ


∣∣2, (51)


a results which is indeedθ -independent as it should.
Integrating these distributions leads to the associated capture rates,λS


λ, λT
λ andλstat


λ for
the singlet (S), triplet (T) and statistical rates, respectively, of the form


λ
S,T,stat
λ = |ψ(0)|


2


4π


(
g2


8M2


)2


V 2
ud


ν2


s
R


S,T,stat
λ , (52)


with Rstat
λ for the statistical capture rate given in (51) already, while for the singlet and


triplet capture rates, one has, respectively:


RS
λ =C(µ)λ +C(1)λ + 2C(2)λ − 2D(2)λ =R(0,0)λ , (53)


RT
λ =C(µ)λ +C(1)λ + 2


3


[
C
(2)
λ +D(2)λ


]
. (54)


It is also possible to represent the hyperfine capture distribution (46) in the following
form [4,5]:


dΓλ
dΩp̂
= 1


4π
λ
(stat)
λ


[
1+Aλ1P1 +AλvPv cosθ +Aλt Pt


(3
2 cos2 θ − 1


2


)]
, (55)


whereAλ1, Aλv andAλt are specific coefficients, the latter two known as the vector and
tensor analyzing powers of the final state nucleus, respectively, whileAλ1 is a measure of
the hyperfine effect on the statistical capture rate since one has


Aλ1 =
1


4


λT
λ − λS


λ


λstat
λ


= λT
λ − λS


λ


3λT
λ + λS


λ


. (56)


Finally in (55), the coefficientsP1,v,t are the following combinations of the hyperfine
populationsNS,m:


P1 =N1,1+N1,0+N1,−1− 3N0,0= 1− 4N0,0, (57)


Pv =N1,1−N1,−1, Pt =N1,1+N1,−1− 2N1,0, (58)


such thatN1,1+N1,−1+N1,0+N0,0= 1.
In terms of the quantities introduced above, one then finds:


Aλ1 =−
1


3


C
(2)
λ − 2D(2)λ
Rstat
λ


, Aλv =−
λ
(
C
(µ)
λ +C(1)λ


)
Rstat
λ


, Aλt =−
2


3


C
(2)
λ +D(2)λ
Rstat
λ


. (59)


Note that when observables are considered in which the summation over the two neutrino
helicity statesλ=±1 has been effected, this summation has to be applied separately in the
numerator and the denominator of each of the expressions given in this subsection.
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3. The 3He case


3.1. Physical inputs


The basic kinematical input used in the case of muon capture on3He is as follows:


M1= 2808.392 MeV, M2= 2808.928 MeV,
√
s = 2914.039 MeV,


ν = 103.22 MeV, ω = 2810.82 MeV, ω−M2= 1.90 MeV.
(60)


As explained in Appendix A, the overlap reduction factorC in this case takes the value
C = 0.979 [4,5], while the latest value quoted in Ref. [35] for the CKMud mixing angle
is used, namely:10


Vud = 0.9750± 0.0008. (61)


This value results from a global fit which includes the constraints of unitarity of the
CKM mixing matrix, rather than the value which would follow solely from the 0+−0+
superallowedβ-decayf t-values.


Values for the nuclear form factors at the relevant momentum transferq2
1 =−0.954m2


µ


must also be specified. For this purpose, we refer to the discussion in Refs. [4,5] and use
the values advocated by these authors. For the electroweak vector and induced magnetic
form factors, one has:


FV
(
q2


1


)= 0.834± 0.011, FM
(
q2


1


)=−13.969± 0.052. (62)


The situation forFA(q2
1) is somewhat more delicate, since only its value atq2= 0 is known


from β-decay of3H, while its q2-dependency may only be inferred through a nuclear
model calculation of the associated mean square charge radius [4,5]. This leads to the
following value:


FA
(
q2


1


)=−1.052± [0.005−0.01], (63)


where the interval for the uncertainty is an attempt to reflect the lack of precise knowledge
of this form factor. The lower uncertainty of 0.005 stems from the uncertainties on the
3H β-decay rate, while the corrections due to mesonic exchange currents may only be
estimated in the nuclear model calculation, leading to a total uncertainty of 0.007 on
FA(q


2
1) [4,5]. Thus the bracket[0.005−0.01] represents a conservative evaluation of the


uncertainty on that form factor, which will be carried along throughout our analysis later
on. As it turns out, the statistical capture rate is rather sensitive to that quantity, so that any
improvement on the evaluation of its uncertainty leads to an improvement on the values
of other quantities that one infers from experiment. However, it is difficult to see how
such an improvement onFA(q2


1) could be achieved in practice, since it would require
a measurement of theq2-dependency of the3He-3H axial form factorFA(q2).


10 The uncertainty on this value is irrelevant for the3He case, but must be included in the prediction for muon
capture on the proton at the precision level reached in Section 4.2. Note also that this value forVud differs
somewhat from that used previously [17–19], which implies that the numbers quoted here differ somewhat from
those quoted earlier, but in no physically significant way whatsoever.
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When it has to be specified, the value used for the induced pseudoscalar form factorFP


is that inferred from the PCAC relation (9), which corresponds to


FPCAC
P


(
q2


1


)=−20.73± [0.10−0.20], (64)


where the uncertainty range indicated in brackets thus corresponds to the associated range
in the value used forFA(q2


1).
Finally, the remaining two second-class form factors for the vector and axial quark ope-


rators,FS(q2
1) andFT (q2


1), are taken to be vanishing, even though for the reasons explained
in Section 2.2, one should expect that their absolute values, normalized to those forFV (q


2
1)


andFA(q2
1), respectively, would be on the order of 0.02. As will become clear later on, the


statistical capture rate is in fact rather insensitive to these two form factors, so that this
reasonable approximation is certainly sufficient.


These are all the nuclear form factors required when considering muon capture within
the SM. Beyond that model however, the genuine nuclear scalar, pseudoscalar and tensor
form factors,GS(q2


1), GP (q
2
1) andGT (q2


1), are also required. As mentioned previously,
values for these quantities are not known, but are expected to be on the order of unity
within a factor of at most ten. Nevertheless, any constraints put on the effective coupling
coefficientshS,V ,T±± beyond the SM will thus involve at present these nuclear form factors
as well.


3.2. Within the standard model


Capture within the SM corresponds to the amplitudeMλ in (10) with only thehV−− = 1
effective coupling coefficient turned on. Given the above numerical values, as well as the
general expressions of Section 2.4, it is straightforward to determine theoretical values
for all the quantities which enter the general final state triton distribution associated to
hyperfine states as parameterized in (55). One finds:11


λS = 1929± [28−46] s−1, A1 =−0.0967± [0.0061−0.0069],
λT = 1351± [16−19] s−1, Av =+0.524± [0.0057−0.0061],
λstat = 1496± [12−21] s−1, At =−0.3790± [0.00074−0.00123],


(65)


where each time the indicated uncertainty includes all uncertainties of all the theoretical
input, while the range indicated by the bracket corresponds to the range implied by
the uncertainty onFA(q2


1). Obviously, some of these results coincide with the specific
quantities also computed in Refs. [4,5] in this particular case.


The disparity in the uncertainty ranges for these quantities stems from their sensitivity
to all theoretical inputs. This sensitivity of an observableO to a parameterFX may be
specified in terms of the variations, evaluated in the SM,


σ(O;FX)= FXO
∂O
∂FX |SM


if FX 6= 0; σ(O;FX)= 1


O
∂O
∂FX |SM


if FX = 0. (66)


11 Note that the helicity indexλ is suppressed, since whether one sums or not over the helicities of the final
neutrino which is only of left-handed chirality is irrelevant in the massless limit in the present case.
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Table 1
Sensitivities of the different observablesO = λS,T,stat,A1,Av,At for muon capture on3He, with
respect to the nuclear form factors associated to the vector and axial quark operators. See (66) for the
definition ofσ(O;FX)


σ (λS;FX) σ (λT;FX) σ (λstat;FX) σ (A1;FX) σ (Av;FX) σ (At ;FX)


FV −0.726 +0.790 +0.301 −4.572 +0.798 +0.0616
FM +0.420 +0.233 +0.293 +0.561 −0.287 +0.254
FA +2.621 +0.997 +1.521 +4.894 −0.134 −1.063
FP −0.314 −0.0210 −0.116 −0.884 −0.377 +0.747
FS −0.0155 +0.0178 +0.0071 −0.101 +0.0173 +0.0017
FT −0.0157 −0.00112 −0.0058 −0.044 −0.0185 +0.0368


The values of these quantities for all the above hyperfine observables are shown in Table 1.
Note that except forAv , all these observables are rather sensitive to the axial form factor
FA(q


2
1), and thus to its bracket of uncertainty. Sensitivities toFP (q2


1) include the results
of Refs. [4,5], showing in fact that except for the triplet capture rate, the statistical rate
which has been measured [14] is the least sensitive observable to that form factor, with the
obvious drawback that all other observables are still far more difficult to measure.


Given the experimental result for the statistical capture rate [14],


λstat
exp= 1496± 4 s−1, (67)


it is possible to infer a value for any given parameter once the values for all other quantities
are specified. Thus given the inputs discussed in Section 3.1 except for the value for
FP (q


2
1), the result (67) implies [14,16–19]:


FP
(
q2


1


)=−20.69± [1.57−2.74] [exp: 0.48], (68)


where the first uncertainty bracket includes both the experimental error as well as all the
uncertainties on the input form factors, the range corresponding again to the range in the
FA(q


2
1) uncertainty, while the last number in brackets represents the uncertainty following


only from the experimental error in (67), namely without any of the errors on the other
inputs. This last number thus indicates the range of improvement that could be achieved
by reducing the uncertainties on the input form factorsFV (q2


1), FM(q
2
1) and FA(q2


1),
and especially on the latter one. Compared to the PCAC expected value for this induced
pseudoscalar form factor, the above result is thus in confirmation of the PCAC prediction
with a precision ranging from 8% to 13%. In order to translate this conclusion in terms of
thenucleonform factorgP , it is necessary to include in the nuclear model calculation all
meson exchange corrections and their associated uncertainties, thereby leading to a 19%
precise test of PCAC with a value in agreement with the prediction [15]. Note also that
given the PCAC relation (9), the above value forFP (q


2
1) inferred from experiment may in


turn be used to determine theπ±−3He-3H nuclear coupling constant to much improved
precision [37].


A combined fit to two independent observables measured to great precision, such as
λstat and the vector analyzing powerAv, would allow a model independent determination
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of bothFA(q2
1) andFP (q2


1). However, it may be shown that in order to obtain a result
for FA(q2


1) with an uncertainty less than the present value of 0.01, would require
a measurement ofAv to better than 1%, no small feat indeed! In particular, when used on
its own, a 1% precise measurement ofAv , centered onto its theoretical prediction, would
imply the following uncertainty range forFP (q2


1) when using for the other form factors
the values quoted in Section 3.1:


FP
(
q2


1


): [0.80−0.80] [exp: 0.55]. (69)


Turning now to the second-class form factorsFS(q2
1) andFT (q2


1), and using the PCAC
prediction (64) forFP (q2


1), the experimental result (67) implies either


FS
(
q2


1


)= 0.026± [1.17−2.02] [exp: 0.38], or (70)


FT
(
q2


1


)=−0.031± [1.42−2.45] [exp: 0.46], (71)


when either form factor is turned on while the other is still set equal to zero. Due to the
small sensitivity of the statistical capture rate to these two parameters, these constraints
are thus extremely poor, but nevertheless they improve somewhat the situation existing
in terms of the nucleon form factorsgS and gT [25] if one is willing to extrapolate
without correction from the hydrogen case. This conclusion would not be much improved
were a 1% precise measurement ofAv to become available, since the corresponding
uncertainties ranges are then


FS
(
q2


1


): ±[0.85−0.89] [exp: 0.58];
FT
(
q2


1


): ±[0.80−0.83] [exp: 0.54]. (72)


Similar considerations could of course be developed on the basis of other observables still,
but we shall refrain from doing so since they are beyond the reach of experiment at present.


Finally, let us point out that ifFP (q2
1) is allowed to vary within its uncertainty bracket


in (68), the corresponding values forFS(q2
1) andFT (q2


1) then also vary accordingly, but
still within their respective uncertainty brackets. Hence any dependency of the results for
FS,T on the value assumed forFP is consistent with their own present uncertainties.


3.3. Beyond the standard model


Let us now turn to the reach for physics beyond the SM offered by the experimental
result (67). Defining sensitivitiesσ(O;hX) of observables to the effective coupling
coefficientshS,V ,T±± in the same manner as in (66) with respect to the vanishing second-
class form factorsFS,T , the corresponding results are given in Table 2, using as input
for nuclear form factors the values discussed in Section 3.1 as well as unit values for the
scalar, pseudoscalar and tensor form factorsGS,P,T . In fact, these observables are not
sensitive (in linear order) to the coefficientshS−±, hT−+ andhV+± because of the fact that
only a left-handed neutrino couples to muon capture in the limit of the SM. Note that some
of these observables are quite sensitive to the tensor couplinghT+−/2, for which stringent
constraints will thus be inferred from (67).
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Table 2
Sensitivities of the different observablesO = λS,T,stat,A1,Av,At for muon capture on3He, with
respect to the effective coupling coefficientshS,V ,T±± . Sensitivities for those couplings which do not
appear in this table are identically vanishing. The scalar and pseudoscalar combinations are defined
by hS+ = hS+− + hS++ andhP+ = hS+− − hS++, while it is understood that all form factorsGS , GP
andGT are set to unity to obtain the numbers in this table. See (66) for the definition ofσ(O;hX)


σ (λS;hX) σ (λT;hX) σ (λstat;hX) σ (A1;hX) σ (Av;hX) σ (At ;hX)


hS+− −0.840 +0.946 +0.370 −5.38 +0.901 +0.126


hS++ −0.810 +0.948 +0.381 −5.30 +0.937 +0.0544


hS+ −0.825 +0.947 +0.375 −5.34 +0.919 +0.0902


hP+ −0.0151 −0.00093 −0.00563 −0.0426 −0.0180 +0.0361
1
2h
T+− +10.1 +3.78 +5.82 +19.00 −0.733 −3.83


hV−− +2.00 +2.00 +2.00 +0.00 +0.00 +0.00


hV−+ −2.61 +0.0478 −0.810 −8.022 +1.022 +0.632


Indeed, the experimental statistical capture rate (67) implies the following results,
turning on only one coupling at a time:


hS+− = 0.00049± [0.0224−0.0385] [exp: 0.00723],
hS++ = 0.00047± [0.0218−0.0374] [exp: 0.00702],


hS+ ≡ hS+− + hS++ = 0.00048± [0.0221−0.0379] [exp: 0.00712],
hP+ ≡ hS+− − hS++ =−0.0322± [1.49−2.55] [exp: 0.48], (73)


1
2h
T+− = 0.000031± [0.00143−0.00245] [exp: 0.00046],
hV−− = 1.00009± [0.00415−0.00712] [exp: 0.00134],
hV−+ =−0.000222± [0.0102−0.0176] [exp: 0.0033].


These values assume implicitly that the form factorsGS,P,T have been set equal to
unity. Note also that the coefficientshS+ andhP+ do define actual scalar and pseudoscalar
interactions at the quark-lepton level, for a neutrino of left-handed chirality.


Again, it may be checked that allowingFP to vary within its uncertainty bracket (68),
each of the above coefficients then also varies essentially within its own uncertainty
bracket. As could be expected from Table 2, the results for the scalar couplingshS+−, hS++
andhS+ are already quite stringent, and in fact improve present limits on such couplings
both in the muonic as well as in electronic sectors. However, the most satisfactory result
is undoubtedly obtained for the tensor couplinghT+−, which is brought down into the per
mille level. Of course, definite conclusions as to the actual limits for such physics beyond
the SM implied by the experimental result (67) would require the evaluation of the form
factorsGS(q2


1), GP (q
2
1) andGT (q2


1). The above limits onhS,V ,T±± are translated in what
may be physically more meaningful terms in Section 5.
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Again for comparison, it is interesting to establish what a 1% precise measurement
of Av , centered onto its theoretical prediction, would imply for the same set of effective
coupling coefficients. Correspondingly, one finds for the associated uncertainty brackets:


hS+−: ±[0.0164−0.0170] [exp: 0.0111],
hS++: ±[0.0157−0.0164] [exp: 0.0107],
hS+: ±[0.0161−0.0167] [exp: 0.0109],
hP+: ±[0.81−0.84] [exp: 0.55],


1
2h
T+−: ±[0.0201−0.0210] [exp: 0.0136],
hV−+: ±[0.0144−0.0150] [exp: 0.0098].


(74)


Hence, such results would improve somewhat on the situation for some coefficients in (73)
following from the experimental statistical capture rate (67).


4. The hydrogen case


4.1. Physical inputs


In the case of muon capture on the proton, the kinematic variables are such that we have
√
s = 1043.93 MeV, ν = 99.146 MeV,


ω= 944.78 MeV, ω−M2= 5.22 MeV. (75)


We also use for the CKMud matrix element the value forVud quoted in (61), including its
uncertainty. Indeed, the latter contributes 0.16% to the final uncertainty on the theoretical
prediction, and should thus be included given the aim of a 0.5% precise measurement of
the singlet capture rate [16,20]. As to the overlap reduction factorC, the value used is that
detailed in Appendix A in the case of the proton, namelyC = 0.9956.


Let us turn to the issue of the nucleon electroweak form factors, to be evaluated at
the momentum transferq2


0 = −0.877m2
µ, beginning with the vector ones,gV (q2


0) and
gM(q


2
0). Since through CVC, the values for these nuclear form factors are related to the


electromagnetic ones for the proton and the neutron whose charge radii are very well
known [45], it becomes possible to infer very precise values forgV (q


2
0) and gM(q2


0).
From the valuesrv1 = 0.765(1± 0.01) fm andrv2 = 0.893(1± 0.01) fm (see Ref. [45] for
the meaning of these parameters), as well as the proton and neutron anomalous magnetic
moments and the fact thatgV (q2= 0)= 1, the following values apply:


gV
(
q2


0


)= 0.9755± 0.0005, gM
(
q2


0


)= 3.5821± 0.0025. (76)


The value for the axial form factorgA(q2
0) is inferred from the neutron decay rate, which


implies [35]


gA
(
q2= 0


)= 1.2670± 0.0035, (77)


as well as the mean square axial charge radius [8,10,11,46]
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rA = 0.65± 0.03 fm. (78)


Consequently, one finds


gA
(
q2


0


)= 1.245± 0.004. (79)


Note that since the capture rates are rather sensitive to the axial form factor (see below), if
the value forgA(q2= 0) were to change again, the values for capture rates would have to
be adapted appropriately.


The value for the induced pseudoscalar form factorgP (q
2
0) is given by the prediction


based on the chiral symmetries of QCD [8–11],


g
χ
P


(
q2


0


)= 2mµfπgπNN
m2
π − q2


0


− 1


3
gA(0)mµMr2


A, (80)


wherefπ = 92.5± 0.2 MeV is the usual pion decay constant andgπNN the pion–nucleon
coupling constant. The latter quantity has been the issue of much debate, but using the
recent precise estimate of Ref. [47],


gπNN = 13.37± 0.09, (81)


one finds


g
χ
P


(
q2


0


)= 8.475± 0.076, (82)


namely, a chiral symmetry prediction with a precision better than 1%.
The second-class form factorsgS andgT are taken to be identically vanishing, an appro-


ximation discussed in Section 2.2 which is justified in the limit of exact isospin symmetry.
However, the effects of isospin breaking are estimated to be small [38–41], on the order of
0.02 for |gS/gV | and |gT /gA|, and given the sensitivity of the capture rates to these two
form factors (see below), their contribution may safely be neglected.


Finally, there is the issue of the nucleon scalar, pseudoscalar and tensor form factors
GS(q


2
0),GP (q


2
0) andGT (q2


0), whose values are unknown at present. Any estimate would
of course be welcome, but the expected result should be of the order of unity, within may
be a factor of at most ten, as mentioned previously.


4.2. Within the standard model


Given the different inputs discussed in Section 4.1, it is straightforward to consider
predictions for the observables in muon capture on the proton within the SM. Setting all
effective coupling coefficientshS,V ,T±± to zero except forhV−− = 1, one then finds:


λS= 688.4± 3.8 s−1, A1 =−0.9337± 0.0007,


λT = 12.01± 0.12 s−1, Av = 0.00371± 0.00030, (83)


λstat= 181.11± 0.98 s−1, At =−0.06260± 0.00052.


Note the small values for the latter two observables, rendering their experimental
determination essentially impossible, given the small polarizations available for the muonic
hydrogen atom.
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Table 3
Sensitivities of the different observablesO = λS,T,stat,A1,Av,At for muon capture on the proton,
with respect to the nuclear form factors associated to the vector and axial quark operators. See (66)
for the definition ofσ(O;FX)


σ (λS;gX) σ (λT;gX) σ (λstat;gX) σ (A1;gX) σ (Av;gX) σ (At ;gX)


gV +0.466 −1.129 +0.386 +0.108 +13.16 −2.39
gM +0.151 +0.680 +0.177 −0.0357 −0.317 +0.551
gA +1.567 +1.440 +1.561 +0.00856 −18.85 +0.991
gP −0.184 +1.008 −0.125 −0.0804 +6.01 +0.844
gS +0.0232 −0.0718 +0.0185 −0.00641 +0.724 −0.139
gT +0.0238 −0.125 +0.0164 +0.01003 −0.759 −0.105


As in the case of muon capture on3He, it is interesting to consider the sensitivity of each
of these observables to the different input nucleon form factors, in particulargP (q


2
0). These


sensitivities are defined as in (66), and their values are presented in Table 3. Note that with
respect to the measured capture rates, namely the statistical one for3He and the singlet
one for the proton, their sensitivity to the induced pseudoscalar form factor is essentially
comparable, as is also the case for the other nucleon form factors.


In fact, assuming the goal reached [16,20] of measuring the singlet rate on the proton to
a precision of 0.5% with a central value equal to the above theoretical prediction precise to
0.55%, one may infer the following value for the induced pseudoscalar form factor:


gP
(
q2


0


)= gχP (q2
0


)± 0.327[exp: 0.230], (84)


where the second indicated uncertainty follows only from the experimental precision of
0.5%, while the first also includes all the errors on the theoretical inputs for the other form
factors and the CKM matrix elementVud . In other words, a 0.5% precise measurement of
the singlet capture rate implies a 3.9% precise determination ofgP and for the test of the
chiral symmetry prediction of that value. In the same way as in Ref. [37], the same result
may also be used to infer a value for the pion–nucleon coupling constantgπNN , assuming
thatgP (q2


0) takes its expected value (82),


gπNN = 13.37± 0.49, (85)


hence a 3.7% precise determination of that quantity.
Pursuing along the same lines, assuming the value forgP (q


2
0) set by the chiral symmetry


prediction, and a measurement of the singlet rate precise to 0.5% in the manner described
above, each of the second-class form factors may also be constrained to the following
precision:


gS : ± 0.314[exp: 0.216], gT : ± 0.307[exp: 0.210], (86)


thus providing much of an improvement on the present situation [25], but still an order of
magnitude away from the expected range of values.
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4.3. Beyond the standard model


The sensitivities of the considered observables to the effective coupling coefficients
h
S,V ,T
±± are given in Table 4, which displays some interesting differences with the3He


case, but again not between the singlet capture rate on the proton and the statistical rate
for 3He.


In order to assess the potential reach offered by the singlet rate for physics beyond the
SM, let us again assume a 0.5% precise measurement of that observable centered onto its
theoretical prediction. One then finds the following uncertainties, for each of the relevant
effective coupling coefficientshS,V ,T±± , turning them on each one after the other:


hS+−: ±0.0168[exp: 0.0115],
hS++: ±0.0187[exp: 0.0128],


hS+ = hS+− + hS++: ±0.0177[exp: 0.0121],
hP+ = hS+− − hS++: ±0.336[exp: 0.230], (87)


1
2h
T+−: ±0.00140[exp: 0.00096],
hV−−: ±0.00364[exp: 0.00250],
hV−+: ±0.0113[exp: 0.0065],


in which it is implicitly assumed that the form factorsGS,P,T have all three been set to
a unit value. Consequently, given the results in (73), the physics reach offered by the singlet
muon capture rate on the proton measured to 0.5% precision improves by factors of at least
two to three the results achieved already from the available statistical capture rate on3He.


Table 4
Sensitivities of the different observablesO = λS,T,stat,A1,Av,At for muon capture on the proton,
with respect to the effective coupling coefficientshS,V ,T±± . Sensitivities for those couplings which
do not appear in this table are identically vanishing. The scalar and pseudoscalar combinations are
defined byhS+ = hS+− + hS++ andhP+ = hS+− − hS++, while it is understood that all form factors
GS , GP andGT are set to unity to obtain the numbers in this table. See (66) for the definition of
σ(O;hX)


σ (λS;hX) σ (λT;hX) σ (λstat;hX) σ (A1;hX) σ (Av;hX) σ (At ;hX)


hS+− +0.434 −1.394 +0.343 +0.123 +12.16 −2.562


hS++ +0.391 −1.157 +0.314 +0.104 +13.57 −2.363


hS+ +0.412 −1.274 +0.328 +0.114 +12.86 −2.461


hP+ +0.0217 −0.118 +0.0147 +0.00945 −0.710 −0.0986
1
2h
T+− −5.21 −5.58 −5.23 +0.0251 +55.21 −3.65


hV−− +2.00 +2.00 +2.00 +0.00 +0.00 +0.00


hV−+ −0.767 −2.90 −0.872 +0.144 +25.68 −3.669
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5. Specific models beyond the standard model


The effective interaction (3) in terms of the coupling coefficientshS,V ,T±± provides
a model independent parameterization for any low-energy contributions stemming from
whatever new physics there is lurking behind the confines of the standard model. However,
taken as such, the constraints (73) obtained from the experimental statistical capture on3He
probably do not mean much in terms of the energy scales or coupling strengths implied
by such constraints. To develop an idea for the latter kind of data however, it becomes
necessary to consider specific models for physics beyond the SM. Three general such
classes will briefly be considered here, with the notations defined in Appendix C. Other
possibilities come to mind, such as for example models with large extra dimensions which
may be amusing to investigate in the same vain. Also, when the singlet capture rate on
the proton will have been measured, similar considerations may be developed as well,
improving to some extent on the present results.


5.1. Left–right symmetric models


Turning first to left–right symmetric models (LRSM), only the limits on the couplings
hV−− andhV−+ need to be considered, since only vector and axial interactions are implied
in such models (up to small scalar Higgs exchange interactions which may be ignored, see
Appendix C). Given the value from (73),


hV−− = 1.00009± 0.00712, (88)


different considerations may be developed. First, one may view this result as a constraint
on the universality of the electroweak interactions [1–3], whose most stringent limit in the
electron–muon flavour sector follows fromπ± decays [35,48] at the 0.4% level. The above
limit implies a universality constraint at the 1.4% level only (in terms of(hV−−)2).


The above result forhV−− may also be viewed as a constraint on the unitarity properties


of the CKM quark flavour-mixing matrix, in terms of the ratioVud/V
unitary
ud . Indeed, in


muon capture one is dealing entirely with the muon flavour sector only, whileVud usually
involves differentβ-decay processes, hence the electron flavour sector. Therefore, another
way to read the constraint onhV−− is to say that the experimental statistical capture rate on
3He confirms the unitary-constrained value forVud , to a level better than what is achieved
in terms of the 0+−0+ superallowedβ-decays where conclusions are somewhat dependent
on the nuclear models used to evaluate the radiative corrections [35].


Finally, within LRSM, the above result forhV−− does not imply any limit on the
massMW


2 of the extra charged gauge boson, since an expression similar to that given in
Appendix C for the coefficienthV−− also applies to the similar coefficientf V−− relevant to
β-decay, so that when reexpressing all couplings in terms of physical quantities (such as the
muon decay rate, and so on), such factors essentially cancel. As a matter of fact, the sole
contribution which survives this comparison of muon decay,β-decay and muon capture
amplitudes, is that in LRSM the CKM leptonic flavour-mixing matrices may be different
for the electron and muon flavours. Thus in fact, the above limit onhV−− translates into
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the following constraint on leptonic flavour-mixing in these two sectors, when the mixing
angleζ of the charged gauge bosons is ignored,ζ = 0 [17]:


(vµ − ve)vur4δ2=−0.00018± 0.01424, with (89)


vµ =
∑′
i


∣∣URµi ∣∣2∑′
i


∣∣ULµi ∣∣2 , ve =
∑′
i


∣∣URei ∣∣2∑′
i


∣∣ULei∣∣2 , vu =
∣∣V Rud ∣∣2∣∣V Lud ∣∣2 , (90)


in which the summation over the indexi stands for all neutrino mass eigenstates whose
production is kinematically allowed in muon capture on the one hand, and inβ-decay on
the other (in which case, their mass is taken to be negligible as well). The other parameters
are defined in Appendix C.


Similarly, the result onhV−+ in (73) may be translated in terms of parameters of LRSM
as (see Appendix C):


rt Re
(
eiωvud


)= 0.000222± 0.0176. (91)


In the case of manifest LRSM withr = 1, vud = 1 andω = 0, this result provides a limit
on the mixing angleζ which does not improve such limits stemming already fromβ-decay
processes [35].


In fact, again in the limit of a vanishing mixing angleζ , the vector analyzing powerAv
reduces to


ALRSM
v |ζ=0


= 1− r4δ2vµvu


1+ r4δ2vµvu
ASM
v , (92)


with ASM
v its SM value. However, even a measurement to 1% ofAv would not imply


a lower bound onMW
2 better than 260 GeV (95% C.L.) in the manifest LRSM.


5.2. Contact interactions


Let us now consider the possibility of contact interactions (see Appendix C). Given
the parameterization of such interactions, it is a simple matter to translate the limits (73)
in terms of the associated compositeness scales, with the following lower bounds (in an
obvious notation) all given at the 95% C.L.:


ΛS+− > 1.60 TeV, ΛS++ > 1.62 TeV, ΛS+ > 1.61 TeV,


ΛP+ > 196 GeV, ΛT+− > 6.34 TeV, ΛV+− > 2.36 TeV. (93)


Clearly, the limits onΛV+− andΛT+− are quite competitive with recent collider results in
some of these channels [49]. One also has to keep in mind that the latter results apply to the
electron sector, while those established here on basis of the experimental statistical capture
rate on3He apply to the muon sector for couplings between the first quark generation and
the second lepton one. On the other hand, the above lower bounds are not as stringent as
those which follow from atomic parity violation [50], but again the latter limits apply to
the electron sector and for neutral current interactions. It is thus fair to say that precision
studies in nuclear muon capture on simple nuclei have at present the potential to test the
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SM in sectors and in ways complementary to those accessible through collider experiments,
hence the physics interest of the limits established above.


5.3. Leptoquarks


Finally, let us consider the possibility of leptoquarks (LQ) [51,52], in the notations
introduced in Appendix C. Among all the possible limits which may be obtained from
(73), only the most stringent ones are presented here.


In the case of scalar LQ, the limit follows from the value for the tensor coupling
coefficienthT+−, leading to


M


λ
> 894 GeV (95% C.L.). (94)


The notation used here is symbolic. Indeed, referring back to the expressions for theh
S,V ,T
±±


coefficients in terms of the LQ couplings and parameters, one sees that thehT+− coupling
involves either theS0(1/3) LQ with the couplingsλL∗S0


λRS0
, or theS1/2(−2/3) LQ with


the couplingsλL∗S1/2
λRS1/2


. Thus in the above lower bound,M stands for the mass of one or
the other of these scalar LQ, whileλ stands for the square root of the product of the two
associated coupling constants.


Similarly considering the limit in (73) on the coefficienthS++, one finds the lower bound,


M


λ
> 915 GeV (95% C.L.), (95)


in a similar notation referring now to either vector LQV0(−2/3) or Ṽ1/2(−1/3) (for the
associated combination of LQ couplings corresponding to the factorλ, see Appendix C).
Again, these limits are certainly as stringent as those recently presented in Refs. [49,53].
This is particularly relevant when one recalls again that the constraints from Ref. [49] refer
to the electron sector, while the limits established here apply to LQ coupling the first quark
generation to the second lepton generation.


6. Conclusions


This paper provides for the first time explicit and complete analytic expressions for
all observables relevant to nuclear muon capture on a spin 1/2 isospin doublet, thus of
direct use to the cases of the proton and3He. The results include all possible contributions
for the nuclear matrix elements, as well as all possible effective interactions beyond
the usual electroweak charged interaction. The analysis was developed with great care,
keeping approximations to the strictest minimum and in ways not affecting the final
numerical results, including the calculation of nuclear finite size corrections to the muon
overlap correction factor, and considering the limit of a Dirac neutrino of zero mass. Such
expressions are ideally suited for tests of the standard model from precision muon capture
experiments, both in addressing still open questions related to the strong nonperturbative
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sector of the quark interactions probed through the electroweak sector, as well as in probing
for any new physics which is lying in store just waiting to be discovered experimentally.


These results also enable specific predictions for observables with a precision on a par
with the challenge on the experimental side as well. Specific new results for muon capture
on the proton have been given, and some others in the case of3He. This situation is
particularly relevant given the recent precision measurement of the statistical capture
rate on3He [14], and the projected 0.5% precise measurement of the singlet rate on the
proton [16,20].


The discussion showed how stringent limits can be inferred from the3He result already,
both within the SM and beyond it, sometimes in real competition with results from
collider experiments, and often complementary to these. The physics reach of the foreseen
experiment on the proton has also been assessed. In due time, when that experiment will
have been completed to the desired level of precision, similar but improved limits and
tests on the SM will be inferred, and in particular the issue of the induced pseudoscalar
nucleon form factor settled once and for all, presumably in perfect agreement with the
theoretical expectation. Also, the potential physics reach of other observables may now
be assessed completely on the basis of the expressions of this paper, even though the
actual measurement of any of these observables, which all involve either initial polarization
muonic atom states or final polarization measurements, or both, poses an almost impossible
experimental challenge. But such a situation has never deterred any experimentalist at
heart, quite to the contrary! We hope that this paper will also be of use in the experimental
pursuit of the impossible polarization observables.
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Appendix A. The overlap reduction factor


In the calculation as outlined in Section 2, it is implicitly assumed that one is dealing
with point-like particles whose quantum states are described by plane waves. Since this
is clearly not the case, further corrections have to be introduced in order to account for
the finite spatial extent of the nuclear charge distributions, for the bound state character
of the initial muonic atom, and for possible relativistic corrections since it is the non
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relativistic Coulomb wave functionψc(r) which is initially considered to represent the
muon probability amplitude rather than the full-fledged solution to the relevant Dirac
equation. Indeed, all these effects ought to be carefully assessed in order to obtain
a trustworthy evaluation of the reduction factorC introduced in (2), with a precision at
the required level with respect to experimental aims.


This appendix presents such an evaluation, following closely the discussion developed
in Ref. [4] in the case of3He. Since such an analysis, which is important for our purposes,
is not available in the literature, we felt it useful to include it here, the more so since it
seems to have been the intention of the author of Ref. [4] to make it available.


Nuclear charge distributions, whether of electric or electroweak matter, need to be
modeled in such an analysis. This we shall do in terms of a spherically symmetric density
ρm(r), where the index distinguishes the different types of matter encountered in the
problem, normalized to unity over the volume of space,∫


(∞)
d3Er ρm(r)= 1, (96)


and dependent on a single length scale parameteram directly related to the mean square
radius of the distribution. The simplest such model which we shall use is of the form


ρm(r)= 1


8πa3
m


e−r/am, (97)


such that


r2
m ≡


〈
r2〉


m
=
∫
(∞)


d3Er r2ρm(r)= 12a2
m. (98)


Other charge distribution models may be considered of course [4], leading to no significant
difference in the evaluation of the reduction factorC. Note that the form factor in
momentum space associated to the model (97) is of the usual dipolar form:


Fm
(
q2)= 1


(1− a2
mq


2)2
. (99)


Given such models, the reduction factorCm associated to each of these nuclear matter
distributions is thus given by [4]√


Cm =
∫
(∞)


d3Er (1+ ν2a2
m


)2
ρm(r) j0(νr)


ψ1(r)


ψ
(0)
1 (0)


, (100)


whereν stands for the neutrino energy. In this expression, the factor(1+ ν2a2
m)


2 stems
from the normalization of the form factorFm(q2) or the normalization condition for the
distributionρm(r), j0(νr) = sin(νr)/(νr) is the spherical Bessel function associated to
the angle-integrated neutrino plane wave function e−i Ep·Er , ψ1(r) is the ground state wave
function of the muonic atom, and finallyψ(0)1 (r)= ψc(r) is the 1S ground state Coulomb
wave function of the muonic atom since this specific choice was made in the normalization
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of the capture distribution (2). Hence, only the functionψ1(r) is left to be computed in
order to evaluate the above overlap integral giving the reduction factorCm.


The wave functionψ1(r) is that of the muon (“carrying” the reduced massµ of
the muonic atom) in the electrostatic field of the nucleus of finite size. In principle,
this function is to be obtained by solving the associated Dirac equation in the given
electrostatic potential, but one would expect that the ensuing relativistic corrections should
be sufficiently small to be ignored since of order(αZ)2, which is the squared velocity of
the bound muon. This expectation is indeed borne out by the detailed numerical resolution
of the associated Dirac equation in the case of3He [4] and of the proton, and this relativistic
correction shall thus not be included here in the evaluation ofCm.


Hence, this leaves only to solve the Schrödinger equation in the same electrostatic
potential of the electric charge distribution of the initial nucleus. For the latter distribution,
we shall again use a model of the form (97), with a parameterac related to the electric
charge mean square radius of that nucleus. Correspondingly, in addition to the usual
Coulomb potential for a point charge of value(+Ze), one needs to include in the
Schrödinger equation the following perturbation in the potential [4]:


1V (r)= αZh̄c
(


1


r
+ 1


2ac


)
e−r/ac . (101)


The contributions of this term to the 1S ground state wave functionψ1(r) are then
computable through perturbation theory. It appears that the first order correction is already
sufficient for our purposes since it is proportional to the factor(ac/a0)


2∼ 10−5, wherea0


is the usual atomic Bohr radiusfor the muonic atom, thus given by


a0= 1


αZ


h̄c


µc2 . (102)


The spherically symmetric solutions to the Coulomb problem are well known. For the
nS state,n= 1,2, . . . , one has


ψ(0)n (r)= 1√
πa3


0n
5


e−r/(na0)L1
n−1


(
2r


na0


)
, ψc(0)≡ψ(0)1 (0)= 1√


πa3
0


, (103)


whereL1
n−1(x) are the usual Laguerre polynomials. The associated (binding) energy


eigenvalues are


E(0)n =−
1


2
(αZ)2µc2 1


n2
. (104)


Adding the correction (101), first-order perturbation theory then leads to the following 1S
ground state normalized wave function:


ψ1(r)= ψ(0)1 (r)− 16
(ac
a0


)2 ∞∑
n=2


1√
n3


1


1− 1
n2


ψ(0)n (r), (105)


while the associated energy is


E1=−1


2
(αZ)2µc2


(
1− 16


(ac
a0


)2
)
. (106)
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The evaluation of the overlap reduction factorCm in (100) is now straightforward using
the integrals


1


ψ
(0)
1 (0)


∫
(∞)


d3Er ρm(r)ψ(0)n (r)= 1√
n3


(
1− 1


n
am
a0


)n−2(
1+ 1


n
am
a0


)n+2


(
1− am


a0


)
. (107)


One then finds


√
Cm = 1(


1+ am
a0


)3
(


1+ ν2a2
m


1+ ν2a2
m


/(
1+ am


a0


)2
)2


− 4
(ac
a0


)2
, (108)


where in the second term which follows from the first-order correction in (105) the limit
am→ 0 has been taken. Numerically, this result does not differ from the same expression
expanded to second order12 in ac/a0 andam/a0 [4]:


√
Cm = 1− 3


1− 1
3ν


2a2
m


1+ ν2a2
m


(am
a0


)
+ 6


1− ν2a2
m


(1+ ν2a2
m)


2


(am
a0


)2− 4
(ac
a0


)2
. (109)


Let us now turn to numerical evaluations, first in the case of3He. The values for the
relevant parametersam may only be inferred from a nuclear model calculation of the
corresponding mean square charge radii. This is done in Ref. [4] with the following results:


a(1) = 0.554 fm, a(σ ) = 0.512 fm, (110)


wherea(1) (respectively,a(σ)) stands for the parameteram associated to form factors for
the vector (respectively, axial) current (thus including the electromagnetic current in the
vector case). Using then the mass values and neutrino energy given in Section 3.1, one
finds:


ac


a0
= 4.17· 10−3, C(1) = 0.9777, C(σ) = 0.9790. (111)


Weighing these two reduction factors with the relative vector and axial current contri-
butions to the capture rates, an effective value ofCeff = 0.9788 is obtained, thus finally
leading to the overlap reduction factor for3He as determined in Ref. [4],


C
(3He


)= 0.979. (112)


In the case of the proton, things may be done with great precision since a great deal
is known about the nucleon electromagnetic form factors [8,45,46]. Given the valuer


p
E =


0.847 fm [45] (known to 1% precision) for the proton electric charge distribution, one has


ac


a0
= 8.59· 10−4. (113)


On the other hand, the values forCV,M,A may be determined using the associated charge
radii r1


v , r2
v andrA discussed in Section 4.1, including their uncertainties. One then finds:


12 Both these ratios being on the order of 10−3, cubic corrections are indeed totally negligible for our purposes.
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CV = 0.99534± 0.00004, CM = 0.99460± 0.00005,


CA = 0.9960± 0.0002. (114)


Assuming then that the correction factor associated to the nuclear matter distribution
characterized by the induced pseudoscalar form factorgP is also given byCA, and
weighing each of these correction factors with the respective relative contributions of the
associated form factors to the capture rates, the following effective value for the overlap
reduction factor is finally obtained:


C(p)= 0.9956. (115)


Note that this value agrees essentially with the 0.4% correction quoted in Ref. [23] in the
case of hydrogen. Here however, a careful assessment of all possible effects has led to this
final value, with increased precision.


Appendix B. Polarization and hyperfine states


In the calculation outlined in Section 2, the natural representation of polarization
states is through the normalized spin vectorsŝµ,1,2 rather than the hyperfine states
(S = 1, m = 0,±1) and (S = 0, m = 0) of the muonic atom. However, there exists a
correspondence between these two bases for the initial spin degrees of freedom, and the
purpose of this appendix is to indicate how results pertaining to these hyperfine states may
be extracted from the results derived in Section 2.


First, let us note that for a spin 1/2 system, any of its normalized quantum states may be
parameterized as


|ŝ〉 = e−iϕ/2 cos
θ


2
|+〉 + eiϕ/2 sin


θ


2
|−〉, (116)


where|±〉 represent the basis of states with spin eigenvaluesm=±1/2 with respect to an
arbitrary quantization axis. The angular variables(θ,ϕ) may be interpreted as being the
spherical coordinates for a unit vectorŝ whose components are defined as in (15), since
one finds for the associated spin component operators given in terms of the usual Pauli
matricesEσ :


〈Eσ 〉 ≡ 〈ŝ|Eσ |ŝ〉 = ŝ (117)


(note also that the state|ŝ〉 corresponds to the bi-spinorχ+(ŝ) in (16)).
Let us now consider the quantum spin states of a bound system of two spin 1/2 particles,


such as the muonic atom, obtained through the tensor product|ŝµ〉µ|ŝ1〉1 of the associated
spin states:


|ŝµ〉µ = e−iϕµ/2 cos
θµ


2
|+〉µ + eiϕµ/2 sin


θµ


2
|−〉µ, (118)


|ŝ1〉1= e−iϕ1/2 cos
θ1


2
|+〉1+ eiϕ1/2 sin


θ1


2
|−〉1. (119)


In terms of the usual|S,m〉 hyperfine state,
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|1,1〉 = |+〉µ|+〉1, |1,−1〉 = |−〉µ|−〉1, (120)


|1,0〉 = 1√
2


[|+〉µ|−〉1+ |−〉µ|+〉1],
|0,0〉 = 1√


2


[|+〉µ|−〉1− |−〉µ|+〉1], (121)


one then finds:


|ŝµ〉µ|ŝ1〉1=A1,1|1,1〉 +A1,−1|1,−1〉 +A1,0|1,0〉 +A0,0|0,0〉, where (122)


A1,1= e−i(ϕµ+ϕ1)/2cµc1, A1,−1= ei(ϕµ+ϕ1)/2sµs1, (123)


A1,0= 1√
2


[
e−i(ϕµ−ϕ1)/2cµs1+ ei(ϕµ−ϕ1)/2sµc1


]
, (124)


A0,0= 1√
2


[
e−i(ϕµ−ϕ1)/2cµs1− ei(ϕµ−ϕ1)/2sµc1


]
, (125)


with cµ = cosθµ/2, sµ = sinθµ/2, c1 = cosθ1/2 and s1 = sinθ1/2. In particular, the
hyperfine populations are then given as


N1,1= 1
4[1+ cosθµ][1+ cosθ1], N1,−1= 1


4[1− cosθµ][1− cosθ1], (126)


N1,0= 1
4


[
1− cosθµ cosθ1+ cos(ϕµ − ϕ1)sinθµ sinθ1


]
, (127)


N0,0= 1
4


[
1− cosθµ cosθ1− cos(ϕµ − ϕ1)sinθµ sinθ1


]
, (128)


with N1,1+N1,−1+N1,0+N0,0= 1, as it should.
Let us now consider the matrix elementMλ(ŝµ, ŝ1) = 〈ŝ2, λ|Ĥeff|ŝµ, ŝ1〉 which was


expressed in Section 2.2 (in a notation which should be self-explanatory). In terms of
the above change of basis in spin space, one then finds the following decomposition into
hyperfine capture amplitudesMS,m


λ :


Mλ


(
ŝµ, ŝ1


)= A1,1M1,1
λ +A1,−1M1,−1


λ +A1,0M1,0
λ +A0,0M0,0


λ . (129)


The hyperfine capture distributions are then given as in (2) with the quantity|Mλ|2
replaced by|MS,m


λ |2. However, the former quantity evaluated in terms of the latter also
involves interference contributions from different hyperfine amplitudes, which must be
disposed of.


In the case of the (S = 1,m=±1) hyperfine states, this is straightforward, since one has∣∣M1,±1
λ


∣∣2= ∣∣Mλ(±ê3,±ê3)
∣∣2, (130)


where the right-handed orthonormalized basis{ê1, ê2, ê3} with respect to which the
spherical coordinates(θ,ϕ) are defined, has been introduced.


The situation for the two other hyperfine states (S = 1, m = 0) and (S = 0, m = 0) is
more involved however, because of their intertwined character in terms of the|ŝµ〉µ|ŝ1〉1
spin states. One way to proceed is as follows.


Consider the following specific combinations:
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X= ∣∣Mλ(ê3,−ê3)
∣∣2+ ∣∣Mλ(−ê3, ê3)


∣∣2= ∣∣M1,0
λ


∣∣2+ ∣∣M0,0
λ


∣∣2, (131)


Y = ∣∣Mλ(ê1, ê1)
∣∣2− ∣∣Mλ(ê1,−ê1)


∣∣2− ∣∣Mλ(−ê1, ê1)
∣∣2+ ∣∣Mλ(−ê1,−ê1)


∣∣2
= ∣∣M1,0


λ


∣∣2− ∣∣M0,0
λ


∣∣2+ 2 Re
(
M1,1


λ M
1,−1∗
λ


)
, (132)


and


Z = ∂2


∂ϕµ∂ϕ1


∣∣Mλ(cosϕµê1+ sinϕµê2,cosϕ1ê1+ sinϕ1ê2)
∣∣2∣∣


ϕµ=0,ϕ1=0


= 1
4


[∣∣M1,0
λ


∣∣2− ∣∣M0,0
λ


∣∣2− 2 Re
(
M1,1


λ M
1,−1∗
λ


)]
. (133)


Then it follows obviously that the remaining two hyperfine state capture distributions are
obtained from∣∣M1,0


λ


∣∣2= 1
2


[
X+ 1


2(Y + 4Z)
]
,


∣∣M0,0
λ


∣∣2= 1
2


[
X− 1


2(Y + 4Z)
]
. (134)


Applying this procedure to the quantityNλ defined in (42) then leads to the hyperfine
state distributions detailed in Section 2.4. Similarly, the quantityEDλ defined in (42) would
lead to the final nucleus polarization state associated to capture from each of the muonic
hyperfine states, as given in (44).


Appendix C. Left–right symmetric models, leptoquarks and contact interactions


The purpose of this appendix is to provide explicit expressions for the effective coupling
coefficientshS,V ,T±± introduced in (3) in terms of the parameters of specific models or
parameterizations for physics beyond the SM. This allows for model independent bounds
that could been determined for thehS,V ,T±± coefficients from some given experiment, to be
translated into may be more physically tangible numbers to be compared with the reach of
other experiments, especially at high energy colliders. Three general classes of such models
beyond the SM are considered here, namely, left–right symmetric models (LRSM), contact
interactions and leptoquarks [51,52].


Left–right symmetric models


In the case of LRSM, we refer to the notations, discussion and references in Ref. [35].
For the process of interest in this paper, in the limit that Higgs exchange is ignored, which
ought to be justified given the necessarily large masses for such particles in LRSM as
well as their small Yukawa couplings directly proportional to the masses of the quarks and
leptons involved in the process, onlyV andA couplings arise in addition to the purely
(V − A) character of the SM charged electroweak interactions. Two massive charged
gauges bosonsW±1,2 appear, with massesMW


1,2, which, up to their mixing through an angle
ζ possibly accompanied by a CP violating phaseω, are associated to(V −A) and(V +A)
interactions characterized by gauge coupling constantsgL,R. In the fermionic sector,
flavour mixing is also parameterized by Cabibbo–Kobayashi–Maskawa mixing matrices,
associated to each chirality sector, denotedV L,R and UL,R for the quark and lepton
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sectors, respectively (indeed in a generic LRSM, neutrinos are massive and thus flavour-
mix with one another as the quarks do). Let us introduce the following combinations of
parameters:


δ =
(
MW


1


)2(
MW


2


)2 , r = gR
gL
, t = tanζ, vud = V


R
ud


V Lud
, ρ = g2


L(
MW


1


)2 cos2 ζ V Lud. (135)


Given the parameterization (3), one then finds for the only nonvanishing effective coupling
coefficients:


g2


8M2Vud h
V−− = ρ


(
1+ δt2)ULµi,


g2


8M2
Vud h


V−+ =−ρrt (1− δ)eiω ULµivud , (136)


g2


8M2
Vud h


V++ = ρr2(t2+ δ)URµivud,
g2


8M2
Vud h


V+− =−ρrt (1− δ)e−iω URµi . (137)


Here, the indicesi = 1,2,3 andµ on the neutrino CKM matrix elementsUL,Rµi stand for
the neutrino mass and muon flavour eigenstates, respectively.


Contact interactions


Let us now turn to the parameterization of so-called contact interactions, which provide
a simple-minded model to probe the scale for compositeness of quarks and leptons. Such
interactions are typically represented through an effective four-Fermi coupling of the
form [35], say in the case of vector operators,


4εη1η2


g2
c


8Λ2 ψγµPη1ψ ψγ
µPη2ψ, (138)


whereεη1,η2 =±1,gc is a contact interaction coupling constant,Λ is the associated energy
scale, andPη1,2 are the chirality projectors already introduced in (3). In the case of nuclear
muon capture, the different spinor fields appearing in this expression correspond of course
to those of (3), namely theu andd quarks, and the muon and its associated neutrino. It is
conventional [35] to fix the scaleΛ by settingg2


c = 4π (which in the case of QED would
amount to having the fine structure constant set to unity,α = 1).


Clearly, such contact interactions may be introduced for any of the scalar, vector and
tensor couplings included in (3), and for any combination of the fermion chiralities
involved. Thus, one could associate a scaleΛ say to vector interactions ofLL, VV ,
VA, etc., chiralities, in any combination possible, and similarly for scalar and tensor
interactions. Note that in the case of nuclear muon capture, these contact interactions are
all related to processes which couple the quarks of the first generation to the leptons of the
second.
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Leptoquarks


Finally, let us consider the case of leptoquarks (LQ) [35,51,52]. These particles come
in two varieties, namely either spin 0 or spin 1, and their name derives from the fact that
they couple always to a quark and a lepton in a single vertex. When one allows for right-
handed neutrinos as well (which was not considered in the original discussion [51]), there
are six different types of scalar and of vector LQ, characterized by their weak isospin and
electric charge. Their quantum numbers underSU(3)c × SU(2)L × U(1) are as follows,
for scalar LQ:


S0: (3,1,−2/3), Q: (−1/3),


S̃0: (3,1,−8/3), Q: (−4/3),


S̃0ν : (3,1,4/3), Q: (2/3),


S1/2: (3̄,2,−7/3), Q: (−2/3,−5/3),


S̃1/2: (3̄,2,−1/3), Q: (1/3,−2/3),


S1: (3,3,−2/3), Q: (2/3,−1/3,−4/3),


(139)


and for vector LQ:


V0: (3̄,1,−4/3), Q: (−2/3),


Ṽ0: (3̄,1,−10/3), Q: (−5/3),


Ṽ0ν : (3,1,2/3), Q: (1/3),


V1/2: (3,2,−5/3), Q: (−1/3,−4/3),


Ṽ1/2: (3,2,1/3), Q: (2/3,−1/3),


V1: (3̄,3,−4/3), Q: (1/3,−2/3,−5/3),


(140)


where each time the electric charge content of the associated isospin multiplet is given on
the right. Note that the lower index carried by each of these fields labels its weak isospin
value. Moreover,̃S0ν and Ṽ0ν are those LQ related to the introduction of right-handed
neutrinos.


The scalar LQ interactions are then parameterized according to the Lagrangian density:


LS = λLS0
qcLiτ2`LS


†
0 + λRS0


ucRµRS
†
0 + λRνS0


dcRνRS
†
0 + λRS̃0


dcRµRS̃
†
0 + λRνS̃0ν


ucRνRS̃
†
0ν


+λLS1/2
uRS


†
1/2`L + λRS1/2


qLS
†
1/2iτ2µR + λLS̃1/2


dR S̃
†
1/2`L + λRS̃1/2


qLS̃
†
1/2iτ2νR


+λLS1
qcL
ES†
1 · iτ2Eτ`L + h.c. (141)


and similarly for vector LQ:


LV = λLV0
qLγµ`LV


µ
0


†+ λRV0
dRγµµRV


µ
0


†+ λRνV0
uRγµνRV


µ
0


†+ λR
Ṽ0
uRγµµRṼ


µ†
0


+λRν
Ṽ0ν
dRγµνRṼ


µ†
0ν + λLV1/2


dcRV
µ†
1/2γµ`L + λRV1/2


qcLV
µ†
1/2γµµR


+λL
Ṽ1/2


ucR Ṽ
µ†
1/2γµ`L + λRṼ1/2


qcLṼ
µ†
1/2γµνR + λLV1


qL EV µ†
1 · γµEτ`L + h.c. (142)
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Here,L andR stand for definite chiral components of the spinor fields, the upper index
“ c” refers to the charge conjugate fields, andqL and`L stand for the following quark and
lepton doublets:


qL:
(
uL


dL


)
, `L:


(
νL


µL


)
. (143)


Finally, the differentλL,RS,V coefficients are complex constant parameters, the LQ coupling
constants. In general, these coefficients are matrices in generation space, but in the case of
nuclear muon capture, only those LQ couplings between the first quark generation and the
second lepton generation, including the possibility of right-handed neutrinos, are relevant,
hence our choice of notation.


Given these definitions, the induced nonvanishing effective couplings coefficientsh
S,V ,T
±±


in (3) are expressed as


g2


8M2
Vud


(
hS−−


)∗ = −1


2


λL∗V0
λRV0


M2
V0
(−2/3)


− 1


2


λL∗V1/2
λRV1/2


M2
V1/2


(−1/3)
, (144)


g2


8M2Vud
(
hS−+


)∗ = +1


8


λLS0
λRν∗S0


M2
S0
(1/3)


+ 1


8


λL
S̃1/2
λR∗
S̃1/2


M2
S̃1/2
(−2/3)


, (145)


g2


8M2Vud
(
hS+−


)∗ = −1


8


λL∗S0
λRS0


M2
S0
(1/3)


− 1


8


λL∗S1/2
λRS1/2


M2
S1/2
(−2/3)


, (146)


g2


8M2Vud
(
hS++


)∗ = −1


2


λLV0
λRν∗V0


M2
V0
(−2/3)


− 1


2


λL
Ṽ1/2


λR∗
Ṽ1/2


M2
Ṽ1/2


(−1/3)
, (147)


g2


8M2
Vud


(
hV−−


)∗ = g2
L


8M2
W


V SM
ud +


1


8


∣∣λLS0


∣∣2
M2
S0
(1/3)


− 1


8


∣∣λLS1


∣∣2
M2
S1
(−1/3)


+ 1


4


∣∣λLV0


∣∣2
M2
V0
(−2/3)


− 1


4


∣∣λLV1


∣∣2
M2
V1
(−2/3)


, (148)


g2


8M2Vud
(
hV++


)∗ = −1


8


λRS0
λRν∗S0


M2
S0
(1/3)


+ 1


4


λRV0
λRν∗V0


M2
V0
(−2/3)


, (149)


g2


8M2
Vud


1


2


(
hT−+


)∗ = − 1


32


λLS0
λRν∗S0


M2
S0
(1/3)


+ 1


32


λL
S̃1/2
λR∗
S̃1/2


M2
S̃1/2
(−2/3)


, (150)


g2


8M2
Vud


1


2


(
hT+−


)∗ = + 1


32


λL∗S0
λRS0


M2
S0
(1/3)


− 1


32


λL∗S1/2
λRS1/2


M2
S1/2
(−2/3)


. (151)


In these expressions, which of the LQ isospin component contributes to a each coefficient
is indicated by giving its electric charge in the parenthesis following the mass value in
the mass contributions 1/M2


S,V . Note that thẽS0ν andṼ0ν LQ do not contribute to these
coefficients.
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