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calculations of strongly correlated quantum systems. In this article the authors discuss the traditional
model of the nucleus as a system of interacting nucleons and outline many recent experimental results
and theoretical developments in the field of few-nucleon physics. The authors describe nuclear
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I. INTRODUCTION


Light nuclei provide a unique testing ground for the
simple, traditional picture of the nucleus as a system of
interacting nucleons. The nucleon-nucleon (NN) inter-
action, as revealed by pp and np scattering experiments
and the deuteron’s properties, has a very rich structure.
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In light nuclear systems, with only a few degrees of free-
dom, it is possible to obtain accurate solutions for a wide
variety of nuclear properties directly from realistic mod-
els of the NN interaction.


Within this deceptively simple picture, we can test our
understanding of nuclear structure and dynamics over a
wide range of energy, from the few keV of astrophysical
relevance to the MeV regime of nuclear spectra to the
tens to hundreds of MeV measured in nuclear response
experiments. Through advances in computational tech-
niques and facilities, the last few years have witnessed
dramatic progress in the theory of light nuclei, as well as
a variety of intriguing new experimental results. Impor-
tant advances have occurred in studies of the spectra
and structure of light nuclei, hadronic scattering, the re-
sponse of light nuclei to external probes, and elec-
troweak reactions involving few-nucleon systems at very
low energy.


The picture of nuclei presented in this article, as
nucleons interacting primarily through two-body inter-
actions, should be adequate at low to modest values of
energy and momentum transfer. Its usefulness lies in its
conceptual simplicity: the nuclear properties are domi-
nated by the two-nucleon interactions and one- and two-
nucleon couplings to electroweak probes. This descrip-
tion is not new. Indeed, our knowledge of the basic
components of the NN interaction—a short-range repul-
sion, an intermediate-range attraction, and a long-range
attraction due to one-pion exchange—were all present
in the work of Hamada and Johnston (1962) and Reid
(1968).


The ability to perform reliable calculations within
such a model is fairly new, however. Calculations with
local interactions began in 1969 (Malfliet and Tjon,
1969a, 1969b), but convergence of the partial-wave ex-
pansion was convincingly demonstrated only in 1985
(Chen et al., 1985). Four-nucleon ground-state calcula-
tions followed in 1990 (Carlson, 1990, 1991) and even
more recently calculations of low-lying states in A55 to
7 (Pudliner et al., 1995). Also new is the connection,
through chiral perturbation theory, of such a picture
within QCD (Weinberg, 1990, 1991). Important conclu-
sions of chiral perturbation theory, in particular the rela-
tive smallness of many-body forces, have been con-
firmed in the phenomenological models described in this
article.


If progress involved only nuclear ground states, the
picture would be interesting but of limited utility. How-
ever, important progress has been made in the scattering
regime as well. Realistic calculations of three-nucleon
(nd) scattering have been performed with momentum-
space Faddeev techniques (Glöckle et al., 1996). Com-
parisons are available with a wide range of experimental
observables, including total cross sections, vector and
tensor analyzing powers, spin-transfer coefficients, and
scattering into specific final-state configurations. The
overall agreement between theory and experiment is
quite good, as many observables are well reproduced in
the calculations. Nevertheless, some discrepancies re-
main unresolved. In particular, the difference between
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calculated and experimental results on the polarization
observable Ay are quite puzzling, possibly pointing to
the need for improved models of the three-nucleon in-
teraction and the inclusion of relativistic effects.


Significant progress has also been made in calculating
low-energy electroweak reactions with realistic strong
interactions and electroweak couplings. Reactions such
as 1H(p ,e1ne)2H, 2H(p ,g)3He, 2H(d ,g)4He, and
3He(p ,1ne)4He have great astrophysical interest and
are also important tests of our understanding of few-
body reactions. They are sensitive both to ground-state
and scattering-state wave functions and the electroweak
current operators. Several methods have been used suc-
cessfully in studying these low-energy capture reactions,
including Faddeev, correlated hyperspherical harmonics
(CHH), and Monte Carlo techniques.


The construction of realistic models of the nuclear
current have proven essential to success in this area.
Two-body currents associated with the NN interaction,
particularly those associated with pion exchange, are
crucial both on theoretical grounds, in order to satisfy
current conservation, and on phenomenological
grounds, as they provide a much improved description
of the properties of light nuclei. The Faddeev and CHH
calculations of the 2H(p ,g)3He and 2H(n ,g)3H cross
sections are in good agreement with experimental val-
ues. The four-body capture reactions are particularly
sensitive to the detailed model of the interactions and
currents, as their cross sections vanish in the limit of no
tensor force and no two-body currents. Discrepancies
exist between variational estimates of the 2H(d ,g)4He
and 3He(n ,g)4He cross sections and the corresponding
experimental values, and it is not yet clear whether these
discrepancies are to be ascribed to deficiencies in the
variational wave function or to the model of two-body
current operator (or both). These questions should be
resolved in the near future.


Electron-scattering experiments provide further cru-
cial tests of our understanding, in particular probing the
electromagnetic current operator at higher values of the
momentum transfer. Again, ground-state properties are
well reproduced within this picture. The framework pre-
sented in this article has been shown to provide, at low
and moderate values of the momentum transfer, a satis-
factory description of the deuteron A(Q) and B(Q)
structure functions and threshold disintegration, the
charge and magnetic form factors of 3H, 3He, and 4He,
and the two-nucleon distribution functions of the helium
isotopes as extracted from the (e ,e8) data. The only
ground-state observables for which small but definite
discrepancies exist between theory and experiment are
the quadrupole moment and tensor polarization of the
deuteron at intermediate values of the momentum trans-
fer (Q50.5–1.0 GeV/c), and the 3He magnetic form
factor in the region of the first diffraction minimum. The
discrepancy in the deuteron quadrupole moment is sig-
nificant; it is a challenge to obtain precise agreement
with all the deuteron data in either a relativistic or a
nonrelativistic model.
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Experiments with polarized and unpolarized electrons
have measured inclusive and exclusive cross sections,
longitudinal and transverse response functions, and
asymmetry observables at intermediate energy and mo-
mentum transfer. The theoretical descriptions of these
reactions have also progressed recently, with exact cal-
culations of the response in A53 with the Faddeev
method, and Euclidean and Lorenz transforms of the
response in A54. The overall agreement with experi-
ment is quite good in complete calculations—those that
include realistic ground-state wave functions, two-body
currents, and final-state interactions. In particular, the
ratio of longitudinal to transverse strength, measured in
electron scattering, is well described. The one-pion-
exchange mechanism is important in each of these com-
ponents and crucial to the overall success of the models.
The failure to explain this ratio in calculations based on
the naive plane-wave impulse approximation (PWIA)
had led to speculations of in-medium modifications of
the nucleon’s form factors, the so-called ‘‘swelling’’ of
the nucleon. In complete microscopic calculations no
such modification of the form factors is necessary or
even desirable.


The aim of this article is to review progress and high-
light the prospects for microscopic studies of light nuclei.
In the following sections, we present some of the meth-
ods used in calculating properties of few-nucleon sys-
tems and provide some highlights of the available com-
parisons with the huge quantity of experimental data.
We begin with studies of nuclear spectra and structure,
then discuss low-energy capture reactions, pd and nd
scattering, and finally the nuclear response. Necessarily,
some of the theoretical and experimental developments
are treated cursorily, but we hope to convey a broad
view of the intriguing and important studies in few-
nucleon physics today.


II. NUCLEAR INTERACTION


We consider the simplest picture of a nucleus, a sys-
tem of interacting neutrons and protons. In a nonrelativ-
istic framework, the Hamiltonian is


(
i


pi
2


2m
1(


i,j
v ij1 (


i,j,k
Vijk1••• , (2.1)


where the nucleons interact via two-, three-, and possi-
bly many-body interactions. Studies of the nuclear inter-
action, both experimental and theoretical, have a long
history, beginning essentially with the discovery of the
neutron by Chadwick in 1932, and proceeding through
the justification of this simple picture of nuclei within
QCD by Weinberg (1991). A nice review of much of this
history, along with a detailed description of current
nucleon-nucleon (NN) interaction models, is given by
Machleidt (1989). Here we merely explain some of the
dominant features of the NN interaction and their im-
portance in the structure and dynamics of light nuclei.
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A. NN interactions


The NN interaction has an extraordinarily rich struc-
ture, as has been recognized for quite a long time. It is
described in terms of the nucleon’s spin (s) and isospin
(t), where both s and t are SU 2 spinors. The former
variable represents the intrinsic angular momentum
(spin) of the nucleon, while the latter is a convenient
representation for its two charge states—the proton and
neutron. The generalized Pauli principle in this frame-
work requires that two-nucleon states be antisymmetric
with respect to the simultaneous exchange of the nucle-
ons’ space, spin, and isospin coordinates. The predomi-
nant isospin-conserving part of the NN interaction is
written as linear combinations of components propor-
tional to the two isoscalars, 1 and ti•tj .


The long-range component of the NN interaction is
due to one-pion exchange (OPE). If isospin-breaking
terms are ignored, it is given, at long distances, by


v ij
OPE5


fpNN
2


4p


mp


3
@Yp~rij!si•sj1Tp~rij!Sij#ti•tj ,


(2.2)


Yp~rij!5
e2mrij


mrij
, (2.3)


Tp~rij!5F11
3


mrij
1


3


~mrij!
2Ge2mrij


mrij
, (2.4)


where the mass mp is the mass of the exchanged pion
and


Sij[3si• r̂ijsj• r̂ij2si•sj (2.5)


is the tensor operator. At distances comparable to the
inverse pion mass (1/m'1.4 fm), one-pion exchange
leads to a large tensor component in the NN interaction.
In nuclear systems, then, the spatial and spin degrees of
freedom are strongly correlated, and hence nuclear few-
and many-body problems can be quite different from
systems where the dominant interaction is independent
of the particles’ internal quantum numbers (spin and
isospin), such as the Coulomb interaction in atomic and
molecular problems or van der Waals forces in systems
like bulk helium.


To further illustrate this point, we reproduce the plots
of the deuteron’s nucleon densities (Fig. 1) for two dif-
ferent orientations of the pair’s spin, Sz561 and Sz50,
respectively (Forest et al., 1996). These figures display
surfaces of constant nucleon density for the two differ-
ent spin orientations. As is apparent in the figure, the
density is strongly correlated with the nuclear spin. Simi-
lar structures in the two-body distributions seem to oc-
cur in all light nuclei (Forest et al., 1996). While this fig-
ure was constructed using a particular model of the NN
interaction, the Argonne v18 model (Wiringa, Stoks, and
Schiavilla, 1995), any NN interaction including short-
range repulsive and long-range tensor components
would produce a nearly indistinguishable plot.


At moderate and short distances, the NN interaction
is much more complicated. However, the large body of
pp and pn scattering data accumulated over the past
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FIG. 1. (Color) Nucleon densities of the S51 deuteron in its two spin projections, Sz561 and Sz50, respectively. From Forest
et al., 1996.

half century provides, by now, very strong constraints,
and indeed has been crucial in advancing our knowledge
of the NN interaction.


One of the important early NN potentials was due to
Reid (1968). It consisted of one-pion exchange at long
distances and was of a partial-wave local form at short
distances. That is, it can be written as


v ij5 (
a ,a8


va ,a8~r !uYa&^Ya8u, (2.6)


where the Ya are two-nucleon states of total isospin T
and angular momentum J , the latter being composed of
the spin S and relative orbital angular momentum L .
The sums over a and a8 run over these two-nucleon
states. In the uncoupled channels (S50 and S51, J
5L), the interaction is diagonal in a , while in the re-
maining triplet (S51) channels, the tensor operator Sij
couples the L5J61 states. In the Reid interaction, the
radial forms of the intermediate- and short-range parts
of va ,a8(r) were simply taken as sums of Yukawa func-
tions.


As more data became available, a variety of more so-
phisticated interaction models were introduced. At short
and intermediate distances, these models can be quite
different, ranging from one-boson-exchange (OBE)
models to models with explicit two-meson exchanges to
purely phenomenological parametrizations. Examples
include the Paris (Cottingham et al., 1973), Bonn
(Machleidt, Holinde, and Elster, 1987), Nijmegen (Na-
gels, Rijken, and de Swart, 1978), and Argonne v14 (Wir-
inga, Smith, and Ainsworth, 1984) interaction models.
The Nijmegen group employed Regge-pole theory to
obtain an NN interaction model that includes numerous
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one-boson-exchange terms with exponential form fac-
tors at the vertices, plus repulsive central Gaussian po-
tentials arising from the Pomeron and tensor trajecto-
ries. This Nijmegen interaction is mildly nonlocal in the
sense that it contains at most two powers of the nucleon
pair’s relative momentum. The resulting interaction can
be written


v ij~r !5(
p


vp~r !Oij
p , (2.7)


where the operators Oij
p are products of


Oij
p 5@1,si•sj ,Sij ,~L•S! ij ,pij


2 ,pij
2 si•sj ,~L•S! ij


2 #


^ @1,ti•tj# , (2.8)


and pij5(pi2pj)/2 is the relative momentum of the pair,
while L is the relative orbital angular momentum. The
radial forms in the interaction are obtained from meson
exchanges with phenomenological form factors. The
coupling constants and form factor cutoffs are then ad-
justed to fit the deuteron properties and NN scattering
data.


The Bonn group (Machleidt, Holinde, and Elster,
1987) used ‘‘old-fashioned’’ time-ordered perturbation
theory and included a number of one-boson-exchange
terms, as well as two-meson exchanges (2p , pr , and
pv), correlated two-pion exchange in the form of the
exchange of an effective scalar meson (the s meson),
effective three-pion exchange, and intermediate D iso-
bars. Several forms of the Bonn interaction were pre-
sented; the ‘‘full’’ Bonn interaction is energy dependent
and consequently difficult to use in many-body calcula-
tions. The Bonn B interaction is often used in realistic
calculations. It is an energy-independent model con-
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structed in momentum space; in coordinate space it con-
tains nonlocalities with the range of the nucleon’s
Compton wavelength ('0.2 fm).


The Argonne v14 (AV14) interaction (Wiringa, Smith,
and Ainsworth, 1984) is of a more phenomenological
form. At short and intermediate distances, its radial de-
pendence is parametrized as a sum of functions propor-
tional to Tp


2 [Eq. (2.4)] and consequently of two-pion-
exchange range, plus short-range Woods-Saxon
functions. The magnitude of these terms, as well as the
parameters of the Woods-Saxon radial shapes, are ad-
justed to fit the data. As in the Nijmegen interaction, the
Argonne v14 is a mildly nonlocal interaction containing
at most two powers of the relative momentum. How-
ever, the Argonne v14 interaction uses the operators


Oij
p 5@1,si•sj ,Sij ,~L•S! ij ,Lij


2 ,Lij
2 si•sj ,~L•S! ij


2 #


^ @1,ti•tj# . (2.9)


The first eight of these operators (those not involving
two powers of the momentum) are unique in the sense
that all such operators are implicitly contained in any
realistic NN interaction model. The choice of the
higher-order terms involving the second power of the
orbital angular momentum operator is different from in
the Nijmegen model, which uses p2 operators in place of
L2. The primary motivation for this choice is conve-
nience in few- and many-body calculations, as the L2


terms do not contribute in relative S waves.
The Paris interaction (Cottingham et al., 1973) is


somewhat of a hybrid model. At intermediate nucleon-
nucleon separations, it includes single v exchange along
with two-pion-exchange contributions calculated using
pN phase shifts, pp interactions, and dispersion rela-
tions. In addition, the Paris interaction contains short-
range phenomenological terms. Indeed, all models
should be considered phenomenological at short dis-
tances; they are either written phenomenologically from
the start or, in the case of boson-exchange models, in-
clude phenomenological meson-nucleon form factors.


Even within the boson-exchange-type models, the in-
teraction should not be taken literally as the exchange of
single bosons. One-boson-exchange models often incor-
porate an effective scalar s meson, which models the
effects of correlated two-pion exchange; its mass and
coupling constant are among the parameters that are
adjusted to fit the two-nucleon data. Moreover, the rela-
tively hard form factors obtained in NN interaction
models can be thought of as simulating the exchange of
heavier mesons with the same quantum numbers, or of
simulating other physical effects outside the direct scope
of the model.


While these models all produce a qualitatively similar
picture of the NN interaction, with one-pion exchange
at long range, an intermediate-range attraction, and a
short-range repulsion, quantitatively they can be some-
what different. For example, the 1P1 phase shifts for
some of these models are plotted in Fig. 2. They vary for
several reasons, chief among them that they have not all
been fit to the same data. For example, models fit to np
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data do not precisely fit the experimental pp data if only
electromagnetic corrections are introduced.


Fortunately, high-quality phase-shift analyses of the
pp and np data have become available recently (Arndt
et al., 1992; Stoks et al., 1993). The Nijmegen analysis
relies upon the (known) long-distance electromagnetic
and one-pion-exchange interactions and makes a simple
energy-dependent parametrization of the interior (rij
,1.4 fm) region. The data and analysis are quite accu-
rate, yielding a x2 very near one per degree of freedom.
The analysis is carried out for both pp and np experi-
mental data, and the accuracy is sufficient to ‘‘reproduce
the experimental charged and neutral-pion masses’’
from the nucleon-nucleon data (Stoks et al., 1993). The
Nijmegen group has also attempted to determine the
pNN coupling constant from the phase-shift analysis
(Stoks, Timmermans, and de Swart, 1993) and found a
slightly lower value (fpNN


2 /4p50.075) than that ob-
tained previously. This particular result is in agreement
with recent analysis of pN data (Arndt, Workman, and
Pavan, 1994), but is still a matter of some dispute
(Arndt, Strakovsky, and Workman, 1995; Bugg and
Machleidt, 1995; Ericson et al., 1995). Another high-
quality phase-shift analysis has been completed by the
VPI group (Arndt et al., 1992).


Recently, several NN interaction models have been fit
to the experimental database. These include updated
Nijmegen interactions (Nijm I, Nijm II, and Reid 93;
Stoks et al., 1994), the Argonne v18 (AV18) interaction
(Wiringa, Stoks, and Schiavilla, 1995), and the CD Bonn
interaction (Machleidt, Sammarruca, and Song, 1996).
These models follow basically along the lines of their


FIG. 2. Singlet 1P1 phases in a variety of previous-generation
interaction models. Not all interactions have been fit to the
same data: Nijmegan, Nagels et al., 1978; Paris, Cottingham
et al., 1973; Bonn, Machleidt et al., 1987; B-S, Bryan and Scott,
1969.
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TABLE I. Experimental deuteron properties compared to recent NN interaction models; meson-
exchange effects in md and Qd are not included.


Experiment Argonne v18 Nijm II Reid 93 CD Bonn Units


AS 0.8846(8)a 0.8850 0.8845 0.8853 0.8845 fm 1/2


h 0.0256(4)b 0.0250 0.0252 0.0251 0.0255
rd 1.971(5)c 1.967 1.9675 1.9686 1.966 fm
md 0.857406(1)d 0.847 m0


Qd 0.2859(3)e 0.270 0.271 0.270 0.270 fm 2


Pd 5.76 5.64 5.70 4.83


aEricson and Rosa-Clot, 1983.
bRodning and Knutson, 1990.
cMartorell, Sprung, and Zheng, 1995.
dLindgren, 1965.
eBishop and Cheung, 1979.

predecessors. However, in order to provide a precise fit,
they are adjusted separately to the np and pp database,
which requires them to contain charge-symmetry-
breaking terms of both isovector (t i ,z1t j ,z) and isoten-
sor (3t i ,zt j ,z2ti•tj) type. Each of these models fits the
NN database extremely well, with x2 per degree of free-
dom near one. The cost of this excellent fit is a rather
large number of parameters; the Argonne v18 interac-
tion has 40 adjustable parameters and the other modern
interaction models have a similar number.


The most recent Nijmegen models are partial-wave
local, in the same sense that the original Reid (1968)
model was. While they retain a boson-exchange basis,
the parameters are adjusted separately in each channel.
The Nijmegen group has also produced an updated
Reid-like model that is written as a sum of Yukawa
functions. Such partial-wave local interactions provide a
very specific choice of nonlocality in the full NN inter-
action. The CD Bonn interaction employs another
choice for the nonlocal terms; the nonlocalities are es-
sentially relativistic corrections and are discussed briefly
below. Finally, the Argonne v18 interaction is maximally
local, containing at most terms proportional to L2.


As has been mentioned, each of these modern inter-
actions contains isospin-breaking terms. At the level of
accuracy required, the electromagnetic interaction must
be specified along with the strong interaction in order to
reproduce the data precisely. These electromagnetic in-
teractions consist of one- and two-photon Coulomb
terms, Darwin-Foldy and vacuum polarization contribu-
tions, and magnetic-moment interactions (Stoks and de
Swart, 1990). The full NN interactions, then, are the
sum of a (dominant) isospin-conserving strong interac-
tion, specified electromagnetic interactions, and finally
additional isospin-breaking terms. The latter, for ex-
ample, are introduced in the Argonne v18 interaction as
terms proportional to


Ok515 . . . 185Tij , si•sjTij , SijTij , ~t i ,z1t j ,z!
(2.10)


where the isotensor operator is


Tij53t i ,zt j ,z2ti•tj . (2.11)


One-pion exchange includes effects of charged versus

., Vol. 70, No. 3, July 1998

neutral pion mass differences. In principle, one could
use different coupling constants for the different charge
channels; however, the Nijmegen analysis finds no ne-
cessity for this and the Argonne v18 interaction uses
fpNN


2 /4p50.075 in all cases. This sophisticated fitting of
the two-body np and pp data, as well as the nn scatter-
ing length, allows the study of isospin-breaking effects in
three-, six-, and seven-nucleon systems.


The properties of the deuteron obtained with these
interactions are given in Table I. The binding energy
Ed52.224575(9) MeV (van der Leun and Alderliesten,
1982) has been fit by construction; the asymptotic con-
stants AS (the S-wave normalization) and h (the D/S
state ratio), which govern the wave function at large dis-
tances, are also quite accurate. The quadrupole moment
Qd and magnetic moment md are underpredicted in the
impulse approximation; however, the latter has signifi-
cant corrections from two-body current operators and
relativistic corrections, as discussed below.


The phase shifts for several channels are displayed in
Figs. 3–6 (Wiringa, Stoks, and Schiavilla, 1995). In Fig. 3
the np and pp phases are shown to demonstrate explic-
itly the difference between the np and pp interaction.
Several recent phase-shift analyses (Arndt et al., 1992;
Bugg and Bryan, 1992; Henneck, 1993; Stoks et al., 1993)
are also shown. In the 1S0 channel (S50, T51, L50),
the two sets are both strongly attractive near threshold,
indicating the presence of a nearly bound state in that
channel. The phase shifts differ by nearly ten degrees
near the maximum, however. For somewhat higher en-
ergies, the interaction remains attractive, but the phase
shift turns negative near 250 MeV in the laboratory
frame. The results of several phase-shift determinations
are also shown in the figure.


The mixing parameter e1 is shown in Fig. 4, where it is
again compared to several analyses. As is apparent, sig-
nificant discrepancies remain among various analyses in
that channel. This has been a subject of much debate,
particularly with regard to comparisons of single- and
multichannel phase-shift analyses. Nevertheless, the be-
havior of all the modern interaction models is quite simi-
lar in this regard. The e1 phase is particularly sensitive to
the strength of the NN tensor interaction.
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More typical is the case of the 3S1 phase presented in
Fig. 5, for which all modern interaction models produce
nearly identical results, in agreement with the Nijmegen
analysis. Finally, the 3PJ phase shifts are presented for
the various interactions in Fig. 6.


Given this simple picture of (partial-wave) local NN
interactions, one obvious concern is the importance of
the choice of the specific radial forms for the individual
components of the interaction. Friar et al. (1993) have
investigated this question, solving for the triton binding
energy with a wide variety of local-potential models.
These interactions contain nonlocalities only at the level
of two powers of the relative momentum (i.e., p2 or L2)
and were found to yield nearly identical results for the


FIG. 3. 1S0 phases of the Argonne v18 interaction compared to
various np and pp phase-shift analyses: Argonne v18 , Wiringa,
Stoks, and Schiavilla, 1995; Bugg-Bryan, Bugg and Bryan,
1992; Nijmegen, Stoks et al., 1993; Henneck, Henneck, 1993;
VPI-SU, Arndt, Workman, and Pavan, 1994. Figure from Wir-
inga et al., 1995.


FIG. 4. 3S1- 3D1 mixing parameter e1 from the Argonne v18
interaction and various phase-shift analyses: Argonne v18,
Wiringa, Stoks, and Schiavilla, 1995; Bugg-Bryan, Bugg and
Bryan, 1992; Nijmegen, Stoks et al., 1993; Henneck, Henneck,
1993; VPI-SU, Arndt, Workman, and Pavan, 1994. Figure from
Wiringa et al., 1995.
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binding energy: 7.6260.01 MeV as compared to the ex-
perimental 8.48 MeV. Clearly, local two-body potentials
are not sufficient to reproduce the three-nucleon binding
energy.


B. Beyond static two-nucleon interactions


A natural question, then, is what other effects are im-
portant in reproducing binding energies of light nuclei?
Two of them are immediately apparent: relativistic cor-
rections and three-nucleon interactions. It has long been
known that these effects cannot be completely
separated—they are related both theoretically and phe-


FIG. 5. 3S1 phases from different modern NN interaction
models: CD Bonn, Machleidt et al., 1996; Nijm II, Stoks,
Klomp, et al., 1994; Nijmegan PPA, Stoks, Klomp, et al., 1993.
Figure from Wiringa, Stoks, and Schiavilla, 1995.


FIG. 6. 3PJ phases from different modern NN interaction
models: AV18, Wiringa et al., 1995; CD Bonn, Machleidt et al.,
1996; Nijm II, Stoks, Klomp, et al., 1994; Nijmegan PPA, Stoks,
Klomp, et al., 1993. Figure from Wiringa, Stoks, and Schiavilla,
1995.
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nomenologically, phenomenologically in the sense that
simple estimates of their contributions are comparable.


The simplest way to estimate relativistic corrections is
to consider a standard nonrelativistic calculation of the
a particle. The total kinetic energy is on the order of 100
MeV, or 25 MeV per particle. Thus one would expect
relativistic corrections on the order of 2% of this value,
or 2 MeV. Three-body forces can be similar in size; at
the longest distances the three-body force is of the well-
known Fujita-Miyazawa type (Fujita and Miyazawa,
1957), corresponding to single-pion exchanges between
three nucleons with the intermediate excitation of a
D-isobar resonance. The presence of this relatively low-
lying resonance requires a three-nucleon interaction at a
similar level, roughly a few MeV in the a particle.


A wide variety of relativistic calculations of light nu-
clei have been carried out. One-boson-exchange mecha-
nisms can be naturally extended to relativistic treat-
ments; such a scheme naturally leads to a four-
dimensional representation of the NN interaction. Rupp
and Tjon (1992) have investigated trinucleon binding as
well as other properties within a separable approxima-
tion to the Bethe-Salpeter equation, and have found an
increase in binding compared to nonrelativistic ap-
proaches.


Several groups have pursued relativistic one-boson-
exchange calculations within various three-dimensional
reductions of the Bethe-Salpeter equation. These groups
generally find a larger binding in the three-body system
than is obtained in nonrelativistic calculations; for ex-
ample, Machleidt, Sammarruca, and Song (1996) have fit
the NN data within a one-boson-exchange model using
a Blankenbecler-Sugar reduction. The resulting quasipo-
tential equation can be cast in a form identical to the
Lippman-Schwinger equation, thus allowing a direct
comparison with standard nonrelativistic results.
Clearly, though, any three-dimensional reduction is not
unique. Upon extending the Blanckenbecler-Sugar for-
malism to the three-nucleon system, Machleidt et al. find
a triton binding energy of 8.19 MeV. Most of the addi-
tional binding is retained even in a nonrelativistic ver-
sion of the calculation; the additional binding in such a
calculation (8.0 MeV) is attributed to the nonlocal char-
acter of the interaction obtained within the
Blankenbecler-Sugar formalism.


Trinucleon properties have also been investigated
within the context of the Gross or spectator equation, in
which one particle is placed on shell in all intermediate
states. This scheme has the advantage of having the cor-
rect Dirac equation limit when one of the particles has a
very large mass. The NN scattering and deuteron prop-
erties were originally investigated by Gross, Van Orden,
and Holinde (1992). Recently, Stadler and Gross (1997)
have introduced off-shell couplings in their one-boson-
exchange model. The triton binding energy has been
found to be sensitive to them. In particular, a set of
parameters that reproduces NN data reasonably well
also yields the correct binding energy.


It is important to realize, though, that many of these
corrections are scheme dependent. For example, differ-
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ent choices of pNN couplings, when converted to two-
and three-nucleon interactions, are connected by unitary
transformations. These different choices are exactly
equivalent at the static level; however, when going be-
yond the static level, arbitrary parameters associated
with the unitary transformation are introduced. Differ-
ent choices in the nonstatic NN interaction also yield
different three-nucleon interactions. Since they are uni-
tarily equivalent, physical properties must be unchanged
(Coon and Friar, 1986; Friar and Coon, 1994). The rela-
tionship between off-shell effects in the NN interaction
and the choice of three-nucleon interactions have also
been discussed by Polyzou and Glöckle (1990).


Without resorting to the specific one-boson-exchange
mechanism, it is also possible to define the general prop-
erties of relativistic Hamiltonians that do not introduce
antinucleon degrees of freedom. Within such a formal-
ism the Poincaré invariance of the theory plays a pivotal
role. The formal requirements of the theory have been
presented in an article by Keister and Polyzou (1991).
Information on the underlying dynamics is outside the
requirements of Poincaré invariance and hence must be
introduced from elsewhere. Fully relativistic calculations
within the relativistic Hamiltonian formalism are not yet
well developed. Glöckle, Lee, and Coester (1986) have
investigated the triton in a simple model and find less
binding than in comparable nonrelativistic calculations.


It is also possible to perform calculations within a v/c
expansion scheme, where terms proportional to powers
of the inverse of the nucleon mass are added to the
Hamiltonian in order to preserve the Poincaré invari-
ance to that order. Such a procedure is based upon the
work of Foldy (1961), Krajcik and Foldy (1974), and
Friar (1975).


One class of relativistic corrections that has been con-
sidered in such a scheme is purely kinematic. By replac-
ing the nonrelativistic kinetic energy with the corre-
sponding relativistic expression and including a frame
dependence in the two- (and three-) nucleon interac-
tions,


H5(
i


Api
21m21(


i,j
v ij~rij ;Pij!


1 (
i,j,k


Vijk~rij ,rik ;Pijk!, (2.12)


it is possible to construct a Hamiltonian with the correct
transformation properties up to order (v/c)2. In this
equation, Pij and Pijk are the total momentum of the
two- and three-body subsystems, respectively, while the
dependence upon the relative coordinate is explicitly
displayed. The Hamiltonian is nonlocal through the
kinetic-energy operator and the frame dependence, but
the nonlocality is rather small—on the order of the
nucleon’s Compton wavelength (Carlson, Pandhari-
pande, and Schiavilla, 1993).


To perform such a calculation, it is necessary first to
refit the NN data and two-body binding energy with the
above Hamiltonian. The results of a comparison with a
phase-equivalent nonrelativistic model are somewhat
surprising, in that these relativistic corrections to three-
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and four-body binding are in fact fairly small and repul-
sive: approximately 0.3 MeV of repulsion in the triton
and almost 2 MeV in the a particle. Similar estimates
for these kinematic effects have been found by Stadler
and Gross (1997) in the framework mentioned above.
The small effect is primarily understood as a cancella-
tion between the change to a ‘‘softer’’ kinetic-energy op-
erator and the revised NN interaction, which must be
more repulsive to yield the same phase shifts. The re-
sulting nucleon momentum distributions are in fact quite
similar in these relativistic and nonrelativistic calcula-
tions (Carlson, Pandharipande, and Schiavilla, 1993).


Of course, other nonlocalities will appear in the NN
interaction. At long distance these are introduced by
relativistic corrections to one-pion exchange, and similar
corrections would be expected in a one-boson-exchange
picture through vector and scalar meson exchange. The
v/c expansion scheme is currently being extended to
treating the nonlocalities associated with one-pion ex-
change. These nonlocalities are required for a fully con-
sistent treatment of the two-body charge operator and
the nuclear Hamiltonian and are naturally present in a
relativistic one-boson-exchange calculation. However,
various technical difficulties make calculations of
heavier systems more difficult within the one-boson-
exchange scheme; more direct comparisons of the differ-
ent relativistic calculations will undoubtedly prove in-
structive in understanding all the results obtained to
date.


Three-nucleon interactions can also arise from the in-
ternal structure of the nucleon. Since all degrees of free-
dom other than the nucleons have been integrated out,
the presence of virtual D resonances induces three-body
forces. The longest-ranged term involves the intermedi-
ate excitation of a D , with pion exchanges involving two
other nucleons. The two-pion-exchange three-nucleon
interaction was originally written down by Fujita and
Miyazawa (1957):


Vijk
2p5A2pF $Xij ,Xik%$ti•tj ,ti•tk%


1
1
4


@Xij ,Xik#@ti•tj ,ti•tk#G , (2.13)


where


Xij5Yp~rij!si•sj1Tp~rij!Sij , (2.14)


and the two terms are anticommutators and commuta-
tors, respectively, of two operators Xij .


This interaction is attractive in light nuclei. Of course,
other effects enter as well; several groups (Picklesimer,
Rice, and Brandenburg, 1992a, 1992b, 1992c, 1992d;
Sauer, 1992) have performed calculations with explicit
D-isobar degrees of freedom in the nuclear wave func-
tions. They generally find that the attraction from the
long-range two-pion-exchange three-nucleon interaction
is canceled by dispersive effects at shorter distances and
hence there is little net attraction.


Within a nucleons-only picture, several explicit mod-
els of the three-nucleon interaction have been proposed.
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One of these put forward by the Tucson-Melbourne
group (Coon et al., 1979), was a three-nucleon interac-
tion based upon a pion-nucleon scattering amplitude de-
rived using partially conserved axial-vector current, cur-
rent algebra, and phenomenological input. This
interaction contains the long-range two-pion-exchange
three-nucleon interaction, but also has additional struc-
ture at shorter distances. More recent versions (Coon
and Peña, 1993) contain r exchange as well as pion-
range forces between the three nucleons, with the p-r
components of the interaction being repulsive in light
nuclei. These models have been used in many different
calculations, and the short-distance pNN cutoff can be
adjusted to reproduce the triton binding energy. The
cutoff dependence of the results is significantly smaller
in models that include r exchange (Stadler et al., 1995).


Another model has been derived by the Brazilian
group (Robilotta and Isidro Filho, 1984, 1986; Robilotta
et al., 1985; Robilotta, 1987) by using tree-level diagrams
of effective Lagrangians that are approximately invari-
ant under chiral and gauge transformations. After
proper adjustments of the parameters, the resulting
force gives results in the trinucleon bound states similar
to those of the Tucson-Melbourne model. Recent stud-
ies of this model are presented in Stadler et al. (1995).


A somewhat different approach has been taken by the
Urbana Argonne group (Carlson, Pandharipande, and
Wiringa, 1983; Pudliner et al., 1995). Given the uncer-
tainties in the three-nucleon interaction at distances
shorter than pion exchange, the interaction is taken as
the sum of the two-pion-exchange three-nucleon inter-
action plus a shorter-range term:


Vijk5Vijk
2p1Vijk


R , (2.15)


with


Vijk
R 5U0(


cyc
Tp


2 ~rij!Tp
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The second term is of two-pion-exchange range on each
of the two legs. It is meant to simulate the dispersive
effects that are required when integrating out D degrees
of freedom. These terms are repulsive and are here
taken to be independent of spin and isospin.


The constants A2p and U0 in front of the two terms
are adjusted to reproduce the triton binding energy and
to provide additional repulsion in hypernetted-chain
variational calculations of nuclear matter near equilib-
rium density. However, the resulting value for the A2p


coefficient is close to that obtained from the analysis of
observed pion-nucleon scattering. Clearly the energy
levels of light nuclei must be well reproduced if accurate
predictions of other observables at low- and
intermediate-energy transfers are to be obtained. Since
one of the major goals is to tie together the medium-
and low-energy properties of light nuclei, it is natural to
make simple assumptions about the nature of the three-
nucleon interaction in pursuit of that goal.


Undoubtedly the real situation is much more compli-
cated: relativistic effects and a significantly more compli-
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cated three-nucleon interaction are certainly present. It
will take far more than calculations of trinucleon bind-
ing energies to shed light on these questions. For ex-
ample, calculations of three-nucleon scattering are, on
occasion, at variance with the experimental data. The
isospin dependence of the three-nucleon interaction
could also prove crucial in studying light neutron-rich
nuclei and neutron stars. Given recent improvements in
experimental data and few-body techniques, it is quite
possible that a more thorough understanding of these
issues will soon be realized.


C. Effective chiral Lagrangian approaches


Before leaving the subject of nuclear interaction mod-
els, one must take note of the recent interest in NN
potentials derived from effective chiral Lagrangians.
The chiral expansion gives a systematic power-counting
scheme in which the nucleon-nucleon interaction can be
obtained. The advantage of such a scheme is a direct
connection to QCD, in that in principle it should be pos-
sible to compute the coefficients of the low-energy effec-
tive theory directly from QCD.


Weinberg demonstrated that a systematic expansion
exists in powers of p/L , where p is a typical nucleon
momentum and L is a characteristic mass scale (Wein-
berg, 1990, 1991). He then proceeded to consider the
leading terms in the expansion. Ordóñez, Ray, and van
Kolck (1994) more recently extended the analysis to
third order, considering the most general effective La-
grangian involving low-momentum pions, nonrelativistic
nucleons, and D isobars. They also employed a Gaussian
cutoff to regularize the theory. At present, the low-
energy constants in the Lagrangian are adjusted to fit
the NN data. While the interaction obtained in this
manner provides a good fit to the NN data, the fit is not
yet of the quality obtained in the more phenomenologi-
cal models. In addition, the work mentioned above em-
ploys an energy-dependent interaction scheme, which is
difficult to employ in a many-body context. Other
schemes that do not employ a simple Gaussian cutoff
result in contact interactions proportional to d(rij). Such
terms are also problematic in any Schrödinger descrip-
tion of the nucleus (Phillips and Cohen, 1997).


However, the advantages of such a systematic treat-
ment of the NN interaction are not to be ignored. They
allow one to begin to place reasonable constraints on the
size of three- and multinucleon interactions and indeed
can be used to construct specific models. One of the
important challenges is to join such systematic schemes
to direct calculations of few- and many-nucleon systems.


III. BOUND-STATE METHODS


Given a model for the nuclear Hamiltonian, a first and
important test is solving for the nuclear ground states.
Although the nuclear interaction models described
above are simple to write down, solutions have proven
to be rather difficult to obtain. For the three-nucleon
system, there is a long history of numerical solutions to
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the Faddeev equations. The first calculation for model
local potentials without tensor interactions was that of
Malfliet and Tjon (1969a, 1969b). By now, a variety of
methods have been used for studying light nuclear spec-
tra. In this section we briefly describe Faddeev methods,
correlated hyperspherical harmonics, and variational
and Green’s-function Monte Carlo methods. These have
all proven successful for the three- and four-nucleon
ground states, but nevertheless have different strengths,
which we shall attempt to assess.


A. Faddeev methods


The Faddeev decomposition of the three- (and now
four-) body problem has proven to be a tremendous
computational tool in studies of light nuclei. In addition
to being useful for studies of bound states and low-
energy (below breakup) scattering, one of the primary
advantages of the Faddeev decomposition is its applica-
bility to higher-energy scattering problems. We first dis-
cuss the application to bound states, deferring the scat-
tering problem until later.


The application of the Faddeev scheme to the bound-
state problem has a long history. Solutions to these
equations typically involve a partial-wave expansion, as
described below. The first five-channel solutions with re-
alistic interactions were obtained in the early to mid 70s
both in momentum space (Harper, Kim, and Tubis,
1972; Brandenburg, Kim, and Tubis, 1974a, 1974b, 1975)
and in coordinate space (Benayoun and Gignoux, 1972a,
1972b; Lavern and Gignoux, 1973). Comparisons be-
tween these groups yielded a triton binding energy of 7.0
MeV for the Reid soft-core interaction. Convergence of
the partial-wave expansion was convincingly demon-
strated by Chen et al. (1985) for a variety of interaction
models. In particular, in 34 channel calculations they
found a triton binding energy of 7.35 MeV for the Reid
soft-core interaction. Similar calculations were subse-
quently performed in momentum space (Witala,
Glöckle, and Kamada, 1991).


The Faddeev decomposition rewrites the Schrödinger
equation as a sum of three equations in which (for two-
particle interactions, at least) only one pair interacts at a
time. The resulting equations are solved in either mo-
mentum or coordinate space. While the decomposition
is identical, the methods employed in practice to obtain
solutions are in fact quite different. The coordinate-
space methods typically solve an integro-differential
equation, so one of the primary concerns is necessarily
the inclusion of correct asymptotic boundary conditions.
Momentum-space calculations, on the other hand, typi-
cally proceed through the Green’s function, and hence
an important consideration is the treatment of the sin-
gularities in the scattering operators. In the sections be-
low, we briefly depict applications to bound-state prob-
lems; later, low-energy and breakup scattering will be
described.


1. Coordinate-space Faddeev methods


In coordinate space, the Schrödinger equation for
three nucleons interacting with two-nucleon interactions
only can be written
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@E2H02v122v132v23#C350, (3.1)


where H0 is the (nonrelativistic) kinetic-energy operator
and v ij is the pair interaction between nucleons i and j .


The Faddeev decomposition consists of defining three
sets of vectors xi , yi through cyclic permutations of i ,j ,k :


xi[rj2rk , (3.2)


yi[2@ri2~rj1rk!/2#/A3 (3.3)


and rewriting the Schrödinger equation as three equa-
tions:


@E2H02v23#c~x1 ,y1!5v23@c~x2 ,y2!1c~x3 ,y3!# ,


@E2H02v13#c~x2 ,y2!5v13@c~x3 ,y3!1c~x1 ,y1!# ,


@E2H02v12#c~x3 ,y3!5v12@c~x1 ,y1!1c~x2 ,y2!# ,


which, when summed, reproduce the original Schrö-
dinger equation for


C3[c~x1 ,y1!1c~x2 ,y2!1c~x3 ,y3!. (3.4)


The kinetic-energy operator is diagonal in x and y:


H052
1
m


¹x
22


1
m


¹y
2 . (3.5)


While rewriting the Schrödinger equation as three
separate equations may appear convoluted, for identical
particles the three solutions c are in fact simple permu-
tations of each other. Hence solving one of these equa-
tions is equivalent to solving the full Schrödinger equa-
tion. Each equation involves only one of the pair
potentials, so a significant simplification has been
achieved. The primary advantage of this rearrangement
is in its application to scattering problems, as we shall
see. However, the method works equally well for bound
states.


Rewriting the Schrödinger equation in this way re-
quires us to specify the permutation properties of the
Faddeev amplitudes c and also to discuss how the spin-
isospin degrees of freedom are to be treated. The latter
is an essential point in nuclear physics, because the num-
ber of degrees of freedom grows so rapidly with the
number of nucleons. First, we consider the Pauli prin-
ciple, which can be satisfied by enforcing antisymmetric
conditions on the interacting pair in the Faddeev ampli-
tude c(xi ,yi) via


c~xi ,yi!52E~ jk !c~xi ,yi!. (3.6)


In this equation E(jk) is the total (space, spin, and iso-
spin) permutation acting on particles j and k . For spin-
polarized fermions this would imply c(2x1 ,y1)5
2c(x1 ,y1), while for nucleons the generalized Pauli
principle simply requires that the pair orbital angular
momentum l , spin sjk, and isospin t jk satisfy l 1sjk


1t jk equal to an odd integer.
The spin-isospin-dependent nature of the Hamil-


tonian requires one to solve, in general, for 43564 pos-
sible functions of x and y that can be classified by their
total spin S and isospin T . Projecting onto a specific
isospin state yields fewer components; for example, the
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3He ground state (T51/2, Tz51/2) has a total of 16
spin-isospin states. In addition, the amplitudes c(xi ,yi)
can be decomposed into partial waves in the angle m
between x and y, with an implicit dependence on the
orientation of the spin-quantization axis. This decompo-
sition converts a Faddeev equation in three variables
into many equations in the two magnitudes x and y .


The usefulness of this partial-wave expansion depends
upon the problem under consideration. For three- and
four-body bound states the wave function is confined to
a fairly small spatial region; hence the angular-
momentum barrier ensures a fairly rapid convergence in
partial waves. In order to perform this decomposition, a
particular angular momentum coupling scheme must be
chosen. Various angular-momentum coupling schemes
have been employed—for example, jJ coupling, in
which the interacting-pair total angular momentum Ji
[jj1jk5(lj1sj)1(lk1sk) is coupled to the total angu-
lar momentum of the spectator ji[li1si . Similarly, the
isospins can be coupled to a total isospin T .


For a calculation of the J5 1
2 ground state in A53, the


interacting pair’s spin and orbital angular momentum
must be coupled to a specific total angular momentum.
These states are then combined with the spin and orbital
angular momentum of the spectator to yield the total J
5T5 1


2 . Each term in this partial-wave expansion is
called a channel. Accurate calculations of three-nucleon
ground states typically keep all interacting-pair NN par-
tial waves with j<4, which requires 34 channels. The
first five of these channels (those with j<2) are given in
Table II. Scattering calculations for J5 3


2 require 62
channels for each parity; of course, the required number
of channels increases with the total angular momentum
of the system.


For realistic calculations, one would like to include
three-nucleon interactions Vijk as well as the Coulomb
interaction. As the former are short-ranged functions,
they can easily be added to the Faddeev equations.
Three-nucleon interactions typically arise from ‘‘inte-
grating out’’ the higher-energy degrees of freedom and
hence can be decomposed into a cyclic sum: Vijk5Vi ;jk
1Vj ;ki1Vk ;ij , where the first index indicates the par-
ticle in a higher-energy intermediate state. The Faddeev
equations can then be written as


@E2H02v232V1;23#c~x1 ,y1!


5~v231V1;23!@c~x2 ,y2!1c~x3 ,y3!# , (3.7)


TABLE II. Dominant channels in the Faddeev and correlated
hyperspherical harmonics (CHH) calculations of the A53
ground state.


Pair Spectator Total
Channel l s j l j Jp


1 0 0 0 0 1/2 1/21


2 0 1 1 0 1/2 1/21,3/21


3 2 1 1 0 1/2 1/21,3/21


4 0 1 1 2 3/2 1/21,3/21


5 2 1 1 2 3/2 1/21,3/21
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plus permutations. The fact that the three-nucleon inter-
actions are short ranged allows for significant freedom in
how they are introduced in the Faddeev equations. Cou-
lomb interactions could be handled similarly, in prin-
ciple, but in fact there are more effective techniques for
dealing with these long-ranged interactions. The Cou-
lomb interaction and boundary conditions on the ampli-
tudes c play a crucial role in scattering calculations, so
we shall defer these discussions to a later section.


Given the decomposition of the amplitudes into par-
tial waves, one must still solve for the various channels
as a function of the magnitudes x and y . A detailed
discussion of the numerical procedures involved is given
by Payne (1987). The most efficient scheme for solving
the Faddeev equations involves transforming the Fad-
deev equations into linear equations by writing the am-
plitudes as splines for the space x and y . In this way it is
possible to set up the finer grids in the regions where the
interaction is stronger.


For bound states, it is then useful to scale the binding
energy out of the problem by writing the solution as a
product of a term that has the correct exponential
asymptotic behavior and an unknown function. The ad-
vantage of the coordinate-space formulation is that the
Hamiltonian is local, or nearly so, and hence many of
the matrices are quite sparse. In the end, the bound-
state problem is an eigenvalue problem, and standard
power methods (i.e., a Lanczos approach) can be used to
solve for the eigenvalues and eigenvectors correspond-
ing to the lowest-energy states.


2. Momentum-space Faddeev methods


In momentum space, the Faddeev equations are writ-
ten as three integral equations:


c15G0T1~c21c3!,


c25G0T2~c31c1!,


c35G0T3~c11c2!, (3.8)
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where the c are again the Faddeev amplitudes, G0 is the
propagator for three noninteracting particles,


G05
1


E2H0
, (3.9)


and the Ti are three-body scattering operators. Ignoring
three-nucleon interactions for the moment, we see that
the Ti are scattering operators for two interacting par-
ticles in a three-particle space. They are labeled by the
index of the noninteracting particle and are obtained
from a solution of the equation


Ti5v jk1v jkG0Ti . (3.10)


The Faddeev amplitudes c i are now written in terms of
the momenta p and q, where


pi[~kj2kk!/2,


qi[2@ki2~kj1kk!/2#/3. (3.11)


The Ti are diagonal in the spectator momentum qi
and can be decomposed by the spin, isospin, and angular
momentum of the two interacting particles coupled to
those of the spectator particle. They are related to the
standard two-body scattering operators t(2) by


^pqauTup8q8a8&5
d~q2q8!


qq8
ta ,a8
~2 !


~p ,p8,E23q2/4m !,


(3.12)


where the labels a ,a8 refer to spin, angular momentum,
and isospin states. These ‘‘channels’’ are precisely the
same as in the coordinate-space Faddeev equations. In
this equation, the last argument of the two-body scatter-
ing operator t(2) is the energy of the two-particle sub-
system. The three-body problem necessarily involves the
off-shell two-body propagators; the energy E
23q2/(4m) is what is available for the interacting pair.


Coupling the angular momentum, spin, and isospin
again yields a series of coupled equations, here in the
magnitudes p and q . With the channels labeled by a , the
Faddeev equations (3.8) are of the form

^pqauc1&5
1


E2p2/m23q2/4m
(
a8


E dp8p82E dq8q82^pqauT1up8q8a8&


3(
a9


E dp9p92E dq9q92^p8q8a8uEup9q9a9&^p9q9a9uc1&, (3.13)

where E is the sum of the two cyclic permutations
E5E(12)E(23)1E(13)E(23).


These equations are not as difficult to solve as they
may at first appear, since the matrix elements of E are
purely geometrical factors, and the T1 operator is diag-
onal in q . Nevertheless, solving such a problem is a sig-
nificant technical challenge. A complete discussion of
the exchange operator is given in Glöckle (1983).

The equations are somewhat more difficult to solve in
the presence of three-nucleon interactions. As in coor-
dinate space, it is possible to add the three-nucleon
equation in different ways. One particularly useful
scheme is to use the symmetry of the solutions of Eq.
(3.8) under particle interchange, to decompose the
three-nucleon interaction as before (Vijk5Vi ;jk1Vj ;ki
1Vk ;ij), and to rewrite the Faddeev equations as
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c5G0TEc1G0~11TG0!Vi ;jk~11E!c , (3.14)


where the first term on the right-hand side is simply
shorthand for Eq. (3.8) and the second term incorpo-
rates the effects of the three-nucleon interaction. The
operator E here is again the sum of the two cyclic per-
mutations. This form of the equations has been written
down in Glöckle (1982) and used by Stadler, Glöckle,
and Sauer (1991), for example.


A generalization of the Faddeev equation for four
particles, the Faddeev-Yakubovsky equations
(Yakubovsky, 1967), have recently been employed to
solve the four-nucleon problem (Glöckle and Kamada,
1993a; 1993b; Glöcke et al., 1994). The number of chan-
nels that must be included grows very rapidly in this
case, and a further complication is that there are now six
spatial dimensions rather than the three required for
three-body calculations. As the decomposition of the
wave function is very similar in the Faddeev and corre-
lated hyperspherical harmonics methods, the four-
particle case is deferred to the next section. Extensions
to three-nucleon interactions in the Faddeev-
Yakubovsky equations have been introduced by Glöckle
and Kamada (1993a, 1993b).


While a certain degree of technical sophistication is
required to solve these equations, there is a considerable
simplification for bound states, in that there are no sin-
gularities in the Faddeev equations. Since the energy is
negative, there are no zeros in the denominator in the
equations for ta ,a8


(2) and T , or in the full Faddeev equa-
tion. Hence the Faddeev equations take the form of a
generalized eigenvalue equation. These can be solved by
standard power methods, adjusting the energy E in the
kernel until the equation is satisfied. Of course, for scat-
tering problems the situation is more complex.


B. The correlated hyperspherical harmonics
variational method


In recent years the correlated hyperspherical harmon-
ics (CHH) variational method has been used to describe
the bound states of the A53 and 4 nuclei, as well as d
1n and d1p scattering states at energies below the
three-body breakup threshold (Kievsky, Viviani, and
Rosati, 1994). The accuracy of these calculations is com-
parable to that achieved in ‘‘exact’’ Faddeev and
Green’s-function Monte Carlo calculations, as will be
shown in Sec. IV.


The wave function of a three-nucleon system with to-
tal angular momentum JJz and total isospin TTz is ex-
panded into a sum of Faddeev-like amplitudes as in Eq.
(3.4). The amplitude c(xi ,yi) is expressed as


c~xi ,yi!5(
a


Faifa~xi ,yi!Ya~ jk ,i !, (3.15)


Ya~ jk ,i !5$@YLa
~ ŷi!Y l a


~ x̂i!#La
@sa


jksa
i #Sa


%JJz
@ ta


jkta
i #TTz


,
(3.16)


where each channel a is specified by the orbital angular
momenta l a , La , and La and the spin (isospin) sa


jk
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(ta
jk) and sa


i (ta
i ) of pair jk and particle i . Orbital and


spin angular momenta are coupled in the LS scheme to
give total angular momentum JJz . The correlation op-
erator Fai is taken to be of the Jastrow form, and its
construction is discussed below. Since c(xi ,yi) must
change sign under the exchange j
k to ensure that the
wave function is antisymmetric, it follows that l a1sa


jk


1ta
jk must be odd (the Fap is assumed to be symmetric


under the exchange j
k). Furthermore, l a1La must
be even or odd depending on whether the state has even
or odd parity. In principle, the sum over a should be
extended to all channels compatible with the restrictions
above. In practice, however, as in the Faddeev method,
it is truncated and only a limited number of channels are
included.


The CHH decomposition is quite similar to the Fad-
deev, the primary differences being (1) the inclusion of
the correlation operators F in the definition of the wave
function and (2) the further decomposition of fa into
hyperspherical harmonics. The hyperspherical coordi-
nates are introduced as


r5Axi
21yi


2, (3.17)


cosf i5xi /r , (3.18)


where the hyper-radius r is independent of the particu-
lar permutation i that is being considered. The depen-
dence of the radial amplitudes fa upon the the hyper-
spherical coordinates is thus expanded as


fa~xi ,yi!5(
n


un
a~r!


r5/2
yi


Laxi
l aYn


a~f i!. (3.19)


The hyper-radial functions un
a(r) vanish exponentially


for large r and are determined variationally as discussed
below. The hyperspherical polynomials Yn


a are defined
as


Yn
a~f i!5Nn


l a ,LaPn
La11/2,l a11/2


~cos2f i!, (3.20)


where Nn
l a ,La are normalization factors, Pn


a ,b are Jacobi
polynomials, and n is a non-negative integer, n
50, . . . ,Ma , Ma being the selected number of basis
functions in channel a .


The correlation factor Fai takes into account the
strong state-dependent correlations induced by the
nucleon-nucleon interaction. It improves the behavior of
the wave function at small internucleon separations,
thus accelerating the convergence of the calculated
quantities with respect to the required number of hyper-
spherical harmonics basis functions in Eq. (3.19). Two
different forms have been employed for Fai :


Fai5fa~rjk! PHH, (3.21)


5fa~rjk!ga~rij!ga~rik! CHH. (3.22)


The projected hyperspherical harmonic (PHH) wave
function only includes correlation effects between nucle-
ons j and k in the active pair, while the CHH wave
function includes in addition correlation effects between
these and the spectator nucleon i . The product of corre-
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lation functions in the CHH expansion introduces an
explicit dependence on the coordinate m i5 x̂i• ŷi , which
leads to a different channel mixing than that which oc-
curs in the PHH expansion. For soft-core interactions
the convergence pattern with respect to the number of
basis functions appears to be somewhat faster in the
PHH expansion than in the CHH one, presumably be-
cause the PHH expansion does not contain the channel
mixing mentioned above. However, the CHH expansion
is also well suited to treating hard-core interactions, to
which the PHH expansion and the Faddeev method are
not applicable.


The correlation functions are obtained with a proce-
dure similar to that used in the construction of
symmetrized-product trial wave functions in variational
Monte Carlo calculations. When two of the nucleons are
close to each other and far removed from the others, it is
expected that their relative motion will be predomi-
nantly influenced by their mutual interaction. The radial
wave function for two particles in state b5jbl b ,sb


jk ,tb
jk


is then obtained from solutions of Schrödinger-like
equations, which can be coupled or uncoupled depend-
ing on b (for an extended discussion, see below).


The Rayleigh-Ritz variational principle


^duC3uH2EuC3&50 (3.23)


is used to determine the hyper-radial functions un
a(r) in


Eq. (3.19). Carrying out the variation duC3 with respect
to the functions un


a(r), we obtain the following equa-
tion:


(
i


^FaiYn
a~f i!Ya~ jk ,i !uH2EuC3&V50, (3.24)


where V denotes the angular variables f i , x̂i , and ŷi .
Performing the integrations over V and the spin-isospin
sums leads to the set of coupled second-order differen-
tial equations,


(
a8,n8


FAn ,n8
a ,a8~r!


d2


dr21Bn ,n8
a ,a8~r!


d


dr
1Cn ,n8


a ,a8~r!


1ENn ,n8
a ,a8~r!Gun8


a8~r!50, (3.25)


where a851, . . . ,aM and n850, . . . ,Ma8 . The total
number of equations is


neq5 (
a51


aM


~Ma11 !. (3.26)


After discretization in the variable r , the set of differen-
tial equations (3.25) is converted to a generalized eigen-
value problem of the form


~Z2E•N!G50, (3.27)


where G is a vector of dimension given by neq3nr , nr


being the number of grid points in r . Details on the
numerical techniques employed—as well as explicit ex-


pressions for the coefficients XK ,K8
a ,a8 (r), along with their


derivation—can be found in Kievsky, Rosati, and Vivi-
ani (1993).
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The CHH method has also been applied to systems
with A54 and 6, although calculations with realistic in-
teractions have been carried out only for the a particle
(Viviani, Kievsky, and Rosati, 1995). The A54 wave
function is decomposed in both the CHH and the
Faddeev-Yakubovsky approaches as


C 45(
i


@cA~xA ,i ,yA ,i ,zA ,i!1cB~xB ,i ,yB ,i ,zB ,i!# ,


(3.28)


where the sum is over distinct permutations of particles
ijkl . The set of Jacobi variables xk ,i , yk ,i , and zk ,i cor-
responds for k5A and B to the partitions 311 and 212,
respectively, and is defined as


set A set B


zA ,i5A3/2~rl2Rkji!, zB ,i5rl2rk ,


yA ,i5A4/3~rk2Rji!, yB ,i5A2~Rlk2Rji!, (3.29)


xA ,i5rj2ri , xB ,i5rj2ri ,


where Rij (Rijk) is the center of mass of particles ij
(ijk). In the LS-coupling scheme, the amplitudes cA
and cB are expanded as


cA~zA ,i ,yA ,i ,xA ,i!5(
a


FapfAa~xA ,i ,yA ,i ,zA ,i!Y ap
A ,


(3.30)


Y ap
A 5$†@Y l 1a


~ ẑA ,i!Y l 2a
~ ŷA ,i!# l 12a


Y l 3a
~ x̂A ,i!‡La


3@†@sisj#Saa
sk‡Sba


sl#Sa
%JJz


@†@ t it j#Taa
tk‡Tba


t l#TTz
,


(3.31)


and


cB~xB ,p ,yB ,p ,zB ,p!


5(
a


FapfBa~xB ,p ,yB ,p ,zB ,p!Y ap
B , (3.32)


Y ap
B 5$†@Y l 1a


~ ẑB ,p!Y l 2a
~ ŷB ,p!# l 12a


Y l 3a
~ x̂B ,p!‡La


3†@sisj#Saa
@sksl#Sba


‡Sa
%JJz


†@ t it j#Taa
@ tkt l#Tba


‡TTz
,


(3.33)


respectively. A channel a is now specified by the orbital-
spin-isospin quantum numbers l 1a , l 2a , l 3a , l 12a La ,
Saa , Sba , Sa , Taa , and Tba . The total orbital and spin
angular momenta are then coupled to give JJz . The
overall antisymmetry of the wave function requires that
cA and cB change sign under the exchange i
j . As for
the A53 case, the correlation operator Fap consists of
the product of central-pair-correlation functions.


It is important to realize that either basis (3.31) or
(3.33) is complete if all channels a are included in the
sums (3.30) and (3.32). In this case, it would be sufficient
to expand the wave function C4 in terms of either set of
Jacobi variables. In practice, the sums over a are trun-
cated, and it is advantageous from the standpoint of
variational calculations (such as those described here) to
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take into account both configurations 311 and 212.
Table III lists the channels included in the most recent
calculations.


The expression for the hyper-radius is now general-
ized to


r5AxA ,i
2 1yA ,i


2 1zA ,i
2 5AxB ,i


2 1yB ,i
2 1zB ,i


2 , (3.34)


which again is independent of the permutation i , and the
hyperangles appropriate for the partitions A and B are
given by


cosf3i5xA ,i /r5xB ,i /r ,


cosf2i
A 5yA ,i /~rsinf3i!, (3.35)


cosf2i
B 5yB ,i /~rsinf3i!.


The radial amplitudes fAa and fBa are expanded in
terms of hyperspherical harmonics basis functions as


fAa~xA ,i ,yA ,i ,zA ,i!


5(
n ,m


unm
a ~r!


r4
zA ,i


l 1ayA ,i
l 2axA ,i


l 3aYnm
a ~f2i


A ,f3i!, (3.36)


fBa~xB,p ,yB,p ,zB,p!


5(
n ,m


wnm
a ~r!


r4
zB ,p


l 1ayB ,p
l 2axB ,p


l 3aYnm
a ~f2p


B ,f3p!, (3.37)


where


TABLE III. Quantum numbers corresponding to channels a
51 –22 included in the partial-wave decomposition of the
wave function C4. Labels A and B correspond to partitions
311 and 212, respectively.


a set l 1 l 2 l 3 l 12 L Sa Sb S Ta Tb T


1 A 0 0 0 0 0 1 1/2 0 0 1/2 0
2 A 0 0 0 0 0 0 1/2 0 1 1/2 0
3 A 0 0 2 0 2 1 3/2 2 0 1/2 0
4 A 0 2 0 2 2 1 3/2 2 0 1/2 0
5 A 0 2 2 2 0 1 1/2 0 0 1/2 0
6 A 0 2 2 2 1 1 1/2 1 0 1/2 0
7 A 0 2 2 2 1 1 3/2 1 0 1/2 0
8 A 0 2 2 2 2 1 3/2 2 0 1/2 0
9 B 2 0 2 2 0 1 1 0 0 0 0
10 B 2 0 2 2 1 1 1 1 0 0 0
11 B 2 0 2 2 2 1 1 2 0 0 0
12 A 0 1 1 1 0 1 1/2 0 1 1/2 0
13 A 0 1 1 1 1 1 1/2 1 1 1/2 0
14 A 0 1 1 1 1 1 3/2 1 1 1/2 0
15 A 0 1 1 1 2 1 3/2 2 1 1/2 0
16 A 1 1 0 0 0 1 1/2 0 0 1/2 0
17 A 1 1 0 1 1 1 1/2 1 0 1/2 0
18 A 1 1 0 1 1 1 3/2 1 0 1/2 0
19 A 1 1 0 2 2 1 3/2 2 0 1/2 0
20 B 0 0 0 0 0 1 1 0 0 0 0
21 B 0 0 2 0 2 1 1 2 0 0 0
22 B 2 0 0 2 2 1 1 2 0 0 0
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Ynm
a ~b ,g!5Nnm


a ~sinb!2mPn
K2a ,l 3a1~1/2!


~cos2b!


3Pm
l 1a1~1/2!,l 2a1~1/2!


~cos2g!. (3.38)


The labels m and n of the Jacobi polynomials run in
principle over all non-negative integers; K2a5l 1a


1l 2a12m12, and Nnm
a are normalization factors. By


using the expansions above, one can write the wave
function schematically as


C45 (
a ,n ,m


Unm
a ~r!


r4
H nm


a ~r ,V! , (3.39)


where U stands for u or w , depending on whether chan-
nel a is constructed with partition 311 or 212, respec-
tively. The factors H include the remaining dependences
on r and angular variables, the latter denoted collec-
tively as V . The linear differential equations resulting
from the minimization of the Hamiltonian are then
solved by the same techniques outlined above.


C. Monte Carlo methods


Monte Carlo methods have often proven useful in the
study of strongly interacting quantum systems, and few-
nucleon systems are no exception. They are primarily
useful when explicit numerical schemes such as Faddeev
or CHH methods cannot be carried out because the di-
mensions of the necessary grids grow too large. Two
principle Monte Carlo schemes have been developed—
variational and Green’s-function Monte Carlo.


Variational Monte Carlo is an approximate varia-
tional method that uses Monte Carlo techniques to per-
form standard numerical quadratures. Green’s-function
(or diffusion) Monte Carlo methods, on the other hand,
employ Monte Carlo methods to evaluate the
imaginary-time path integrals relevant for a light
nucleus. They typically use the variational Monte Carlo
wave functions as a starting point and cool them in order
to measure ground-state observables. In this section we
describe the application of these methods to ground-
state properties; each can also be employed to gain in-
formation about nuclear dynamics.


1. Variational Monte Carlo


Variational Monte Carlo (VMC) employs an explicit
form of a trial wave function, typically containing 20–30
variational parameters. These parameters are optimized
by minimizing the expectation value of the energy;
Monte Carlo methods, specifically the Metropolis et al.
(1953) algorithm, are used to evaluate the spatial inte-
grals.


The trial wave functions used in VMC calculations
typically have a simple form:


uCT&5FS )
i,j,k


FijkGFS)
i,j


FijG uCJ&, (3.40)


where S represents the symmetrization operator, respec-
tively, acting over the A-particle space. In this equation
for uCT&, the Jastrow state uCJ& carries the quantum
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number information and, for A.4, much of the long-
distance physics. Important clustering properties and
binding or threshold effects are incorporated here. The
Jastrow wave function uCJ& is written as


uCJ&5AF )
i,jPs


fss
c ~rij! )


iPs,jPp
fsp


c ~rij! )
iPp,jPp


fpp
c ~rij!uF&G ,


(3.41)


where A is the antisymmetrization operator. The
central-pair correlations fc are functions of the pair dis-
tance only. However, the long-distance behavior may be
different for nucleons in different shells, and hence the
fc are labeled by the single-particle orbits of the two
nucleons. The determination of these Jastrow factors is
described below. For these larger systems, uF& is written
as a sum over a small number of shell-model configura-
tions and the coefficients of the various configurations
are variational parameters.


For example, in recent calculations of six-body nuclei
(Pudliner et al., 1995),


uF~JMTTz!&


5A@Fa~00!fp~r5,a!fp~r6,a!#


3(
L ,S


bJLS†@Y1~V5,a!Y1~V6,a!#L@x5x6#S‡JM


3@h5h6#T ,Tz
, (3.42)


where uFa(00)& is an antisymmetrized product of four-
nucleon spinors coupled to J5T50 with no spatial de-
pendence, and the spatial dependence in the p-wave or-
bitals fp is taken from the solution of a single nucleon in
a Woods-Saxon well. Additional clustering properties—
for example, the a-d breakup in A56, as well as three-
body correlations—can also be incorporated in the Ja-
strow wave function if they are found to be important.
Note that the wave function is translationally invariant
in that it involves only pair separations and the separa-
tion between p-shell nucleons and s-shell clusters. The
wave functions CJ are constructed to be eigenstates of
the total momentum J. Since the pair-correlation opera-
tors commute with J, the total wave function also has
good total angular momentum.


The ‘‘two-body’’ spin-isospin correlation operators Fij
in Eq. (3.40) carry the short- and intermediate-range
physics, including the tensor correlations and the isospin
dependence in the short-range repulsion. They are pa-
rametrized as


Fij5F11 (
m52,8


um~rij ;R!Oij
mG , (3.43)


and contain operators Oij
m that are a subset of those em-


ployed in the interaction:


Oij
m5@1,si•sj ,Sij ,~L•S! ij# ^ @1,ti•tj# . (3.44)


The product fc(rij)Fij is required to satisfy the short-
distance properties of the wave function as two nucleons
are brought close together. The dependence upon the
pair distance rij is obtained as a solution of Schrödinger-
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like equations in the various two-body channels. These
correlations are obtained from equations similar to
those used for the low-density limit of Fermi
hypernetted-chain variational calculations of nuclear
matter (Wiringa, Fiks, and Fabrocini, 1988; Arriaga,
Pandharipande, and Wiringa, 1995). Schematically, they
are written as


2~1/m !¹2@f~r !f~r!#JST1@v ij1l~r !#@f~r !f~r!#JST50.
(3.45)


This equation is solved for the various J ,S ,T channels
and the correlations are recast into the operator form, as
in Eq. (3.43). The functions f(r) contain the appropri-
ate spherical harmonics for the given channel. For the
spin-triplet channels the combination @f(r)f(r)#JST sat-
isfies two coupled equations with L5J21 and L5J11
(Wiringa, 1991). The variational parameters are in-
cluded in the functional form of l(r). For s-shell nuclei,
the form is adjusted so that


@fss
c ~r !#A21→exp~2gr !/r , (3.46)


where g is related to the separation energy of the last
nucleon. Spin dependence in the breakup channels can
be treated by including a nonzero long-distance behav-
ior in the spin-dependent correlations um(r). For larger
systems, however, the product of the fsp or fpp in uCJ&
multiplied by the Fij is adjusted to go to a constant. The
pair-correlation functions Fij are defined to carry the
spin-isospin dependence of only particles i and j . How-
ever, the associated amplitudes um are functions of the
coordinates of all the nucleons; the presence of the re-
maining particles requires a quenching of the noncentral
correlations. The full structure of this quenching is de-
scribed by Arriaga, Pandharipande, and Wiringa (1995).


The structure of the three-nucleon correlations Fijk
can, in principle, be quite complicated. The most impor-
tant correlation is that due to the three-nucleon interac-
tion Vijk ; the operator form is taken from


Fijk512bVijk , (3.47)


where b is again a variational parameter. Additional
three-body correlations have been investigated by Ar-
riaga, Pandharipande, and Wiringa (1995).


Given the wave function, one can, in principle, evalu-
ate the expectation value of any operator using Me-
tropolis Monte Carlo techniques. Variational Monte
Carlo methods have often been employed in studies of
other quantum systems, including, for example, atoms
and molecules, the electron gas, and liquid and solid he-
lium. The state dependence of the interaction, though,
requires a somewhat different treatment than is tradi-
tionally used in VMC calculations. Typically, one uses
the Metropolis method to obtain points distributed pro-
portional to a probability density W(R), often choosing
W(R)5u^CT(R)uCT(R)&u, where the angle brackets in-
dicate sums over the internal degrees of freedom, the
spins and isospins. Hence an estimate of an expectation
value is obtained from
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^O&5


E dR^CT~R!uOuCT~R!&


E dR^CT~R!uCT~R!&


'


(
i


^CT~Ri!uOuCT~Ri!&/W~Ri!


(
i


^CT~Ri!CT~Ri!&/W~Ri!


. (3.48)


In the case of the Hamiltonian, we are averaging the
‘‘local’’ energy ^CTuHuCT&/W(R) over the points to
yield an estimate of the ground-state energy.


Several variations on the standard methods are incor-
porated to treat light nuclei. First, instead of computing
the full wave function uCT& in Eq. (3.40), one can
sample over the order of pair- and triplet-correlation
operators Fij and Fijk that are implied by the symmetri-
zation operators S in Eq. (3.40). These orders must be
sampled independently for the left- and right-hand wave
functions and a positive-definite choice made for a prob-
ability density W(R).


In all cases, Monte Carlo methods are used to evalu-
ate the coordinate-space integrals, while spin-isospin
sums are explicitly evaluated. The number of spin de-
grees of freedom grows as 2A, while the isospin grows a
little more slowly due to charge and (approximate) iso-
spin conservation. The efficiency of the variational cal-
culations can be dramatically improved by calculating
energy differences between different wave functions.
Nevertheless, these explicit spin-isospin summations re-
quire computing time that grows exponentially with A , a
requirement that has limited standard variational Monte
Carlo calculations of nuclear systems to light nuclei. In
principle, it should be possible to sample over at least
some of the degrees of freedom, but an exact practical
scheme that yields a variance small enough to be useful
has yet to be found. However, cluster VMC algorithms
invoke a cluster approximation to sum over a connected
set of spin-isospin degrees of freedom and have been
applied to studying the ground state of 16O (Pieper,
Wiringa, and Pandharipande, 1990, 1992) and spin-orbit
splitting in 15N (Pieper and Pandharipande, 1993). Such
calculations are also a useful starting point, for example,
for Glauber calculations of electron scattering in heavier
systems (Pandharipande and Pieper, 1992).


Once the variational parameters have been optimized,
the expectation value of any ground-state observable
can be evaluated using Eq. (3.48). Off-diagonal observ-
ables, such as momentum distributions, can be similarly
evaluated. They simply require an additional integration
variable corresponding to the off-diagonal displacement.
Experimental quantities of interest include charge and
magnetic form factors, sum rules, etc. In addition, other
quantities can be computed that are not directly observ-
able experimentally, but that are useful in approximate
theories of reactions, including momentum distributions
of nucleons and nucleon clusters. A summary of some
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recent results is given below; additional results are pre-
sented by Arriaga, Pandharipande, and Wiringa (1995)
and Forest et al. (1996).


2. Green’s-function Monte Carlo


Diffusion or Green’s-function Monte Carlo (GFMC)
methods rely upon the path-integral approach to evalu-
ate the imaginary-time propagation of the wave func-
tion:


uC0&5 lim
t→`


exp@2~H2E0!t#uCT&, (3.49)


where uC0& is the ground state of H with energy E0, and
uCT& is a trial state. In order to evaluate this propaga-
tion, one splits up the imaginary time t into small time
slices Dt , and iterates an equation of the form


uC~t1Dt!&5exp@2~H2E0!Dt#uC~t!&. (3.50)


This method has a long history, starting with calcula-
tions of the a particle using a spin-isospin-independent
interaction by Kalos (1962). It has also been used exten-
sively for problems in atomic and condensed-matter
physics. The first application to state-dependent interac-
tions was provided by Carlson (1987), and more realistic
interactions were used in Carlson, 1988 and Carlson,
1991. Recently calculations for A56 and 7 have been
performed, which are the first direct microscopic calcu-
lations of these p-shell nuclei (Pudliner et al., 1995, Pud-
liner et al. 1997).


The first element in performing such a calculation is
an evaluation of the matrix elements of the short-time
propagator:


^R8,x8uexp~2HDt!uR,x&


[G~R8,R;Dt!'F )
i51,A


G0,i~ uri2ri8u!G
3 (


x1 ,x2


^x8uF12
Dt


2 (
i,j,k


Vijk~R8!G ux1&


3^x1uS)
i,j


F gij~rij8 ,rij!


g0,ij~rij8 ,rij!
G ux2&^x2u


3F12
Dt


2 (
i,j,k


Vijk~R!G ux&, (3.51)


where the x represent A-nucleon spin-isospin states,
G0,i and g0,ij are the free one- and two-body imaginary-
time propagators, respectively, and gij is the interacting
two-body propagator.


The free propagators are simple Gaussians:


G0,i5N1expF2m
~ri82ri!


2


2Dt G , (3.52)


g0,ij5N2expF2m
~rij8 2rij!


2


4Dt G , (3.53)


with normalizations Ni such that the norm of the flux is
preserved (*dri G0,i51). The pair propagator gij is the
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imaginary-time equivalent of the two-body T matrix. It
is a matrix in the two-body spin-isospin space and must
be calculated numerically. The propagator satisfies an
evolution equation,


^x ij8 uF ]


]t
1HijGgij~r8,r;t!ux ij&50, (3.54)


where


Hij52~1/m !¹ ij
2 1v ij (3.55)


and x ij and x ij8 are two-nucleon spin-isospin states. The
gij also satisfy a boundary condition


^x ij8 ugij~r8,r;t50 !ux ij&5d~r2r8!dx ij8 ,x ij
. (3.56)


Techniques for calculating and storing gij are described
in detail by Pudliner et al. (1977).


Once the propagator G(R,R8;Dt) is constructed, a
practical algorithm must be implemented to carry out
the iteration of the wave function [Eq. (3.50)]. The
scheme currently used for sampling the paths is de-
scribed in detail by Pudliner et al. (1997); here, we sim-
ply sketch the basic ideas. Since the wave functions
(propagators) are vectors (matrices) in spin-isospin
space, a scalar quantity must be defined to sample the
paths. In principle, any set of paths can be chosen as
long as the probability used to choose the paths is di-
vided out when computing expectation values. To mini-
mize the variance, though, it is important to follow as
closely as possible standard importance-sampling tech-
niques used in traditional Green’s-function and diffusion
Monte Carlo (Pudliner et al., 1997). In essence, this re-
quires sampling from a kernel so that the probability of
a configuration at R is proportional to


(x^CT~R!ux&^xuC~R;t!&.


In the limit that the trial wave function CT is exact and
the propagator is sampled exactly, this method would
produce the correct ground-state energy with no vari-
ance.


To this end, we introduce an importance function I
that depends upon the full trial and GFMC wave func-
tions. The calculations proceed by sampling paths from
I@CT(R),C(R;t)# . The importance function must be
real and positive; a convenient choice is


I@CT~R!,C~R;t!#5U(
x


^CT~R!ux&^xuC~R;t!&U
1e(


x
U^CT~R!ux&^xuC~R;t!&U ,


(3.57)


where e is a small positive coefficient. The second term
ensures that all paths are allowed with a positive prob-
ability. In this equation and those that follow, the depen-
dence upon the symmetrization S in the pair and triplet
orders will be suppressed, both in the wave function, Eq.
(3.40), and in the propagator, Eq. (3.51). The pair and
triplet orders are, in fact, sampled in both cases. Details
of the sampling and weighting of paths are described by
Pudliner et al. (1997).
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Branching techniques are used to split (delete) paths
with large (small) importance functions I@CT(R),
C(R;t)] in a statistically unbiased manner. After
branching, expectation values can be recovered from the
equivalent of Eq. (3.48) evaluated between the trial and
propagated GFMC wave functions:


^O~t!&'
(


i
^CT~Ri!uOuC~Ri ;t!&/I@CT~Ri!,C~Ri ;t!#


(
i


^CT~Ri!uC~Ri ;t!&/I@CT~Ri!,C~Ri ;t!#


.


(3.58)


This is the basis of the importance-sampled GFMC al-
gorithm for noncentral interactions. Iterating this equa-
tion propagates the amplitudes of the wave function in a
way designed to minimize statistical fluctuations in cal-
culated expectation values.


The matrix element in Eq. (3.58) is a ‘‘mixed’’ esti-
mate; it is of the form


^O&mix5
^CTuOexp~2Ht!uCT&


^CTuexp~2Ht!uCT&
. (3.59)


The value Omix is the matrix element of the trial (varia-
tional) and the true ground state. The mixed estimate is
sufficient to evaluate the ground-state energy, since the
Hamiltonian commutes with the propagator. Indeed, an
upper bound to the true ground-state energy E0 is ob-
tained for any value of t :


^H&mix5
^CTuexp~2Ht/2!Hexp~2Ht/2!uCT&


^CTuexp~2Ht/2!exp~2Ht/2!uCT&
>E0 .


(3.60)


Of course, the actual convergence is governed by the
accuracy of the trial wave function and the spectrum of
the Hamiltonian. Often knowledge of the spectrum can
be used to estimate the remaining error in a calculation
that necessarily proceeds only to a finite t .


For quantities other than the energy, one typically es-
timates the true ground-state expectation value by ex-
trapolating from the mixed and variational estimates:


^O&'2^O&mix2
^CTuOuCT&


^CTuCT&
, (3.61)


which is accurate to first order in the difference between
C and CT . The variational wave functions used in this
work are typically quite accurate, so this estimate is usu-
ally sufficient. For momentum-independent quantities,
one can also retain a time history of the path in order to
reconstruct an estimate of the form


^O&5
^CTuexp~2Ht/2!Oexp~2Ht/2!uCT&


^CTuexp~2Ht/2!exp~2Ht/2!uCT&
. (3.62)


For momentum-dependent operators O , however, the
statistical fluctuations associated with this estimate can
be quite large.


Two caveats remain in present-day GFMC calcula-
tions of light nuclei. First, due to the well-known ‘‘sign
problem’’ in all path integral simulations of fermions,
the statistical error grows rapidly with t . Present-day
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TABLE IV. Triton binding energy comparison for different methods.


3H 3He
Hamiltonian Method B (MeV) B (MeV)


PHH 7.683 7.032
AV14 Faddeev/Q 7.680a


Faddeev/R 7.670b 7.014
GFMC 7.670(8)b


AV18/IX GFMC 8.471(12)c


PHH 8.475e


Expt. 8.48 7.72


aGlöckle et al., 1995.
bChen et al., 1985.
cPudliner et al., 1997.
dKievsky, Viviani, and Rosati, 1995.
eViviani, 1997.

calculations are typically limited to t of the order of
0.05–0.1 MeV21. This is not as severe a situation as one
might suppose, since we have quite accurate variational
wave functions available for these nuclei and we have a
significant knowledge of the excitation spectra in these
systems. For calculations of six- and seven-body nuclei,
it is useful to perform a shell-model-like diagonalization
in variational Monte Carlo to determine the optimum
amplitudes for the various symmetry components of the
p-wave part of the wave function (Pudliner et al., 1997).
Nevertheless, for some problems it may be quite useful
to have a path-integral approximation that provides an-
other type of approximation to the true ground state.
For example, the fixed-node (Anderson, 1975; Ceperley
and Alder, 1980) and constrained-path methods (Zhang,
Carlson, and Gubernatis, 1995) have proven quite valu-
able in condensed-matter problems. These constraints
can often be relaxed to yield an even better estimate of
observables.


The other concern is that, in all currently available
GFMC calculations, an approximate interaction that
contains no p2 terms has been used in the propagation.
Perturbation theory is then used to determine the expec-
tation value of the difference between the two Hamilto-
nians. This approximation has proven to be quite accu-
rate in studies of the three- and four-body systems.
Although the equations above are still correct for an
interaction with p2, L2, or (L•S)2 interactions, a direct
implementation of the method will yield large statistical
errors. Again, variational schemes based upon con-
straints to the path integral may prove useful.


Green’s-function Monte Carlo has proven to be quite
accurate in the three-, and now four-, body systems in
which it has been tested. Recent applications to larger
systems (Pudliner et al., 1995, 1997) provide the first real
tests of these microscopic models beyond A54. It is also
possible to compute low-energy scattering with path-
integral techniques, as well as to obtain information
about a variety of dynamic nuclear-response functions.
A selection of results will be presented later in this ar-
ticle.

., Vol. 70, No. 3, July 1998

IV. LIGHT NUCLEAR SPECTRA


The spectra of light nuclear systems provide the first
test of nuclear interaction models. Only if the spectra
are well reproduced can one expect to calculate accu-
rately other low-energy and low-momentum observ-
ables, like radii, form factors, and scattering lengths. In
this section we present a brief review of results in light
nuclei, the most recent calculations of which include sys-
tems up to A57.


These calculations also provide a substantial test of
the consistency of chiral perturbation theory in nuclei; it
is a priori unclear how well a microscopic picture framed
in terms of nucleon degrees of freedom with only two-
and (small) three-nucleon interactions can reproduce
nuclear spectra and structure.


A. Three- and four-nucleon systems


The simplest system, A53, was the original test of
realistic interaction models. As described previously,
there is a considerable history of Faddeev solutions of
the three-nucleon bound-state problem, in both coordi-
nate and momentum space. More recently, correlated
hyperspherical harmonics (CHH; Kievsky, Rosati, and
Viviani, 1993) and Green’s-function Monte Carlo
(GFMC; Carlson, 1995) calculations have also been per-
formed for A53, basically as tests of the methods. The
binding energies obtained with the various methods are
in excellent agreement, typically within 10 keV or less.
The GFMC calculations are limited to an accuracy of 20
keV by statistical fluctuations and the approximations in
the treatment of p2-components of the interaction. A
comparison of results obtained with different methods
for the Argonne interaction models is given in Table IV.
In all cases the agreement between different methods is
very good.


As noted previously, local two-nucleon interaction
models underbind the triton by 800 keV compared to
experiment. This naturally leads to too large a charge
radius and also affects the nd scattering lengths. A vari-
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TABLE V. Triton binding energy comparison for different interactions. See text for a discussion of
these results.


Hamiltonian B (MeV) x2/Nd Type


Nijm II 7.62a 1.03 local
Reid 93 7.63a 1.03 local
Argonne v18 (AV18) 7.62a 1.09 local


Nijm I 7.72a 1.03 nonlocal one-boson exchange
CD Bonn 8.00b 1.03 nonlocal


CD Bonn 8.19b 1.03 rel. BbS Eq.
Gross 8.50c 2.40 rel. Gross Eq.


CD-Bonn1Tucson-Melbourne (TM) 8.48d TNI (L/mp54.856)
Nijm II1TM 8.48d TNI (L/mp54.99)
AV181TM 8.48d TNI (L/mp55.21)
AV181TNI IX 8.47e Urbana TNI IX


aFriar et al., 1993.
bMachleidt, Sammarruca, and Song, 1996.
cStadler and Gross, 1997.
dNogga, Hüber, Kamada, and Glöckle, 1997.
ePudliner et al., 1997.

ety of recent results for realistic interaction models are
presented in Table V. The local interaction models
(Nijm II, Reid 93, and Argonne v18) produce a binding
energy of 7.6260.01 MeV for the triton, as compared to
the experimental 8.48 MeV. The Nijm I interaction is
nonlocal in the central channel and gives a slightly larger
binding of 7.72 MeV.


The relativistic calculations of Machleidt, Sammar-
ruca, and Song (1996) and Stadler and Gross (1997) give
greater binding energies. In the first instance, both rela-
tivistic and nonrelativistic (but nonlocal) calculations
were performed. The NN interaction was adjusted to
provide an excellent fit to the np and pp data, and the
resulting binding energy was about halfway between the
local NN interactions and the experimental value. The
Gross equations have also been solved for a realistic NN
interaction model (Stadler and Gross, 1997). In this case,
fewer parameters were used in the one-boson-exchange
model, and hence the statistical fit to the NN database
was not as good. They included off-shell scalar sNN
couplings and were able to reproduce the experimental
triton binding energy and a reasonable fit to the NN
phase shifts with a suitable choice of these couplings.
Gross and Stadler emphasize that this type of model is
equivalent to another one-boson-exchange model with-
out such off-shell couplings, but with an additional spe-
cific family of N-body forces.


Upon including specific three-body interactions, a
natural choice is to adjust the three-nucleon interaction
strength to yield the correct binding energy. In the
framework of the Tucson-Melbourne three-nucleon in-
teraction model, this has been done by adjusting the cut-
off at the pNN vertex; harder cutoffs produce a larger
effect. Table V lists several combinations of realistic NN
interactions with specific cutoffs that reproduce the ex-
perimental binding energies (Nogga, Hüber, Kamada,
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and Glöckle, 1997). In the Urbana/Argonne three-
nucleon interaction models VIII and IX, the strength is
constrained to fit the triton binding energy when used
with the Argonne (isospin-conserving) v14 or v18 inter-
actions, respectively. As discussed later, adjusting the
three-nucleon interaction in this way also yields nd scat-
tering lengths that are in agreement with experimental
values.


Clearly, though, it is also important to go beyond A
53. Chiral perturbation theory, for example, predicts
that four-nucleon interactions are much less important
than three-nucleon ones, which are, in turn, much
smaller than two-nucleon interactions. This can only be
tested by studying larger systems. It is also important to
study neutron-rich and proton-rich systems to under-
stand the isospin dependence of the three-nucleon inter-
action. Ideally, one would like to be able to proceed
from light nuclei to light p-shell nuclei to neutron stars
with the same Hamiltonian and similar accuracy. While
this has still not been achieved, significant progress has
been made.


The four-body system is the next step, and it has been
studied by several groups. While the nucleons are in pre-
dominantly spatially symmetric configurations for both
the three- and four-body ground states, the a particle is
tightly bound. This tight binding, an approximately 20-
MeV nucleon separation energy, yields a rather high
central density. In addition, the fact that there are four
triplets in the four-body system as compared to one in
A53 implies that the three-nucleon interaction is com-
paratively more important here.


Again, the alpha particle is severely underbound in
the presence of static two-nucleon interactions only.
Tjon (1975) originally noticed the strong correlation in
three- and four-body binding energies. Carlson (1991)
provided the first complete calculations with realistic
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two- (and three-) nucleon interactions, and found that a
three-nucleon interaction fit to the measured triton
binding energy also produced a result for the a-particle
binding energy close to the experimental value. More
recently, several other groups have calculated A54
binding energy using both Faddeev-Yakubovsky
(Glöckle and Kamada, 1993a, 1993b) and CHH (Vivi-
ani, Kievsky, and Rosati, 1995) methods. Although the
agreement between these calculations is not quite as
good as that for the three-body system, it is nevertheless
satisfactory, as indicated by a comparison of results pre-
sented in Table VI.


With two-nucleon interactions alone, the results are
accurate to within 0.2 MeV. In the CHH calculations the
authors provide an estimate of 0.05 MeV for the error
arising from channel truncation, which yields an esti-
mate consistent with the GFMC results. These newer,
more accurate GFMC results are also consistent with
the older result of 24.260.2 MeV (Carlson and Schia-
villa, 1994a). The Faddeev-Yakubovsky results are
slightly (0.2 MeV) lower than the others. For the Ar-
gonne v18 interaction, recent calculations are in similar
good agreement: the CHH method (Viviani, 1997) yields
a binding energy of 24.11 MeV compared to the GFMC
result of 24.160.1 MeV.


When three-nucleon interactions are added, the
agreement is not quite as good. The CHH and GFMC
calculations differ by approximately 0.8 MeV. However,
the A54 CHH calculation in the presence of a three-
nucleon interaction has an estimated truncation error of
0.4 MeV, and it will soon be possible to perform a
larger, more complete calculation. At present, the best
variational Monte Carlo calculation is slightly higher
than the CHH calculation, but both yield significantly
less binding than the GFMC result, which coincides with
the experimental binding energy. These results should
be considered in substantial agreement. Note that the
kinetic energy in this system is of the order of 100 MeV;
the energies are calculated to an accuracy much better


TABLE VI. 4He binding energies with and without three-
nucleon interaction; comparison of different methods: corre-
lated hyperspherical harmonics (CHH), Faddeev-Yakubovsky
(FY), variational Monte Carlo (VMC), and Green’s-function
Monte Carlo (GFMC). Error bars in CHH calculations are
estimates of the effects of channel truncation.


Hamiltonian AV14 AV141TNI 8


CHH 24.17(5)a 27.48b


FY 24.01b


VMC 27.6(1)c


GFMC 24.23(3)e 28.3(2)f


aViviani, 1997.
bViviani, Kievksy, and Rosati, 1995.
cGlöckle et al., 1995.
dArriaga, Pandharipande, and Wiringa, 1995.
ePudliner et al., 1977.
fCarlson and Schiavilla, 1994a.
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than 1% of this value. Of course, it would be useful to
reduce the difference through more accurate calcula-
tions.


It is worthwhile to consider other expectation values
to understand the a-particle structure. For example,
while the kinetic energy and NN interaction contribu-
tions are of the order of 100 MeV, the three-nucleon
interaction is of the order of 10 MeV. Hence the two-
nucleon interaction is still dominant; in fact, a further
breakdown of the individual contributions to ^v2& indi-
cates that (1) the short-range repulsion and
intermediate-range attraction are sizable but of opposite
sign, and (2) the one-pion-exchange potential is ex-
tremely important, having an expectation value of al-
most 75% of the full NN interaction. Finally, we note
that the alpha particle has a D-state percentage of nearly
15%, largely arising from the one-pion-exchange inter-
action.


B. Light p-shell nuclei


In the low-lying states of light p-shell nuclei, a consid-
erably different regime of the NN interaction is tested.
Here negative-parity states become important for the
first time. At present, only Monte Carlo methods have
been used to study these systems with realistic interac-
tion models; certainly, this will change in the years
ahead.


Historically, p-shell nuclei have been studied with the
nuclear shell model. Recently, a great deal of progress
has been made in so-called ‘‘no-core’’ shell-model calcu-
lations (Zheng et al., 1995). These yield quite good spec-
tral results starting from a microscopic NN G matrix. As
an average energy constant has been added to these
shell-model calculations, it is difficult to compare the
corresponding results directly with those from the mi-
croscopic calculations described below. However, com-
parisons of the two approaches, particularly regarding
ground- and excited-state expectation values, are likely
to be quite valuable.


The first p-shell ‘‘nucleus’’ is 5He, which is not bound.
The two lowest-lying states are negative-parity reso-
nances consisting predominantly of a p 1/2 or p 3/2 neutron
outside of an a-particle core. The low-energy scattering
techniques described in Sec. VIII are adequate to treat
this system; in the calculations described here the neu-
tron is confined within a radius of 12.5 fm from the a
particle. Assuming this distance to be large enough so
that there are essentially no interactions between the
two clusters, the experimental n-a phase shifts (Bond
and Firk, 1977) can be directly converted to energies.
For the radius chosen, the p 3/2 state is nearly at reso-
nance, while the p 1/2 state is slightly above.


For the AV18/IX model, the GFMC calculation of the
3/22 states gives an energy of 226.5(2) MeV, as com-
pared to the experimental 227.2 (Pudliner et al., 1995).
The 1/22 state is well reproduced; the GFMC calcula-
tion gives 225.7(2) MeV, compared to the experimen-







764 J. Carlson and R. Schiavilla: Structure and dynamics of few-nucleon systems

FIG. 7. (Color) Energy spectra of A54 –7 nuclei, obtained in variational Monte Carlo (VMC) and Green’s-function Monte Carlo
(GFMC) calculations with the Argonne v18 two-nucleon and Urbana model IX three-nucleon interactions. Both the central value
and the one-standard-deviation error estimate are shown. GFMC results are a variational bound obtained by averaging from t
50.04–0.06 MeV 21.

tal 225.8. Thus this calculation yields approximately
two-thirds of the experimental spin-orbit splitting in
5He.


Green’s-function Monte Carlo calculations produce a
series of decreasing upper bounds to the true energy as
the iteration time t is increased. For 5He, the calcula-
tions appear to be well converged—indeed, little depen-
dence upon t is seen for any observable for t.0.03
MeV21. Hence the only uncertainty remaining is the de-
gree to which the difference between the full isospin-
dependent Hamiltonian and a simpler static v8 model
can be treated in perturbation theory. While this is ap-
parently quite a good approximation in A53 and 4, for
larger systems it remains to be tested.


The initial sets of calculations for A56 –7 have re-
cently been completed (Pudliner et al., 1995, 1997), and
the results are quite encouraging. Figure 7 compares the
GFMC spectra to experiment for these systems; the
overall agreement is quite satisfactory. While the abso-
lute energies are slightly higher than experiment, the
level splittings appear to be well described. These calcu-
lations provide a significant test of the three-nucleon in-
teraction. While the errors in the calculation are on the
order of 1 MeV, the three-nucleon-interaction expecta-
tion values are approximately 10 MeV.


In Fig. 8 we show the convergence with imaginary
time for one of the most recent six-body calculations.
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Similar calculations in A54 and 5 show that the results
are well converged. Statistical fluctuations that occur in
all path-integral calculations of fermion systems
(Schmidt and Kalos, 1984) limit the calculations to t


FIG. 8. Convergence with imaginary time t of the Green’s-
function Monte Carlo (GFMC) calculations of A56. Curves
are fits to ground-state plus excitations, and the horizontal
lines are the average from t50.04–0.06 MeV 21 plus and mi-
nus one standard deviation.
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<0.06 MeV21, and hence only the relatively high-lying
components of the trial wave function are projected out.
The two curves are fits to the data for t.0.01 MeV21,
with a ground-state plus excited-state contribution. The
dashed curve fits the data only up to t50.06 MeV21,
while the solid curve includes all the data up to 0.1
MeV21. The latter yields a ground-state energy approxi-
mately one standard deviation below the average from
t50.04–0.06 MeV21, which is shown as horizontal lines
in the figure. A variety of tests of the GFMC method
have been performed. These tests confirm that the
GFMC is able to correct for very poor choices of short-
ranged correlations, but is not able to adequately sup-
press all low-lying excitations within the present limit of
t50.06 MeV21. In order to perform the most accurate
calculations possible, the starting variational Monte
Carlo (VMC) wave functions have been optimized with
respect to the presence of different symmetry compo-


TABLE VII. Experimental and quantum Monte Carlo ener-
gies of A53 –7 nuclei in MeV (Pudliner et al., 1997), for varia-
tional Monte Carlo (VMC), Green’s-function Monte Carlo
(GFMC), and experiment.


AZ(Jp;T) VMC GFMC Expt.


2H(11;0) 22.2248(5) 22.2246
3H( 1


2
1; 1


2 ) 28.32(1) 28.47(1) 28.48
4He(01;0) 227.76(3) 228.30(2) 228.30
6He(01;1) 224.87(7) 227.64(14) 229.27
6He(21;1) 223.01(7) 225.84(11) 227.47
6Li(11;0) 228.09(7) 231.25(11) 231.99
6Li(31;0) 225.16(7) 228.53(32) 229.80
6Li(01;1) 224.25(7) 227.31(15) 228.43
6Li(21;0) 223.86(8) 226.82(35) 227.68
6Be(01;1) 222.79(7) 225.52(11) 226.92
7He( 3


2
2; 3


2 ) 220.43(12) 225.16(16) 228.82


7Li( 3
2


2; 1
2 ) 232.78(11) 237.44(28) 239.24


7Li( 1
2


2; 1
2 ) 232.45(11) 236.68(30) 238.76


7Li( 7
2


2; 1
2 ) 227.30(11) 231.72(30) 234.61


7Li( 5
2


2; 1
2 ) 226.14(11) 230.88(35) 232.56


7Li( 3
2


2; 3
2 ) 219.73(12) 224.79(18) 228.00

Rev. Mod. Phys., Vol. 70, No. 3, July 1998

nents in the single-particle part of the wave function.
These small-basis diagonalizations reproduce the stan-
dard dominant spatially symmetric components of the
ground-state wave function that were originally ob-
tained in shell-model calculations.


Ground-state energies for A53 –7 are presented in
Table VII, and a variety of expectation values for spe-
cific ground states are presented in Table VIII. In the
tables, the energy is an upper bound obtained from av-
eraging results from t50.04 to 0.06 MeV21. It may be
possible to improve these calculations further. For ex-
ample, it is possible to compute estimates for an arbi-
trary mixture of states with different symmetries, as is
currently done in the VMC calculations. In addition, it
should be possible to place constraints on the path-
integral calculations to extend them to much larger t .
Indeed, such approximate techniques have proven to be
very valuable in condensed-matter simulations.


This is particularly important for studying low-energy
and low-momentum transfer properties of the nuclei.
The present VMC calculations do not provide enough
binding compared to the lowest breakup threshold and
hence have been adjusted to give the experimental
ground-state radius of Li. The radii as well as the mag-
netic and quadrupole moments in the VMC calculations
are given in Table IX. Due to the limit of the present
GFMC calculations to t50.06 MeV21, it is not clear
that they have converged to the true ground-state val-
ues, for this Hamiltonian.


Green’s-function Monte Carlo has also been em-
ployed to study isospin-breaking in light nuclei. The cal-
culations use an average isoscalar interaction and evalu-
ate the electromagnetic and strong-interaction isospin-
breaking terms in perturbation theory. Using the
Argonne v18 model, Pudliner et al. (1997) have repro-
duced the isovector energy differences between the 3H-
3He and 6He- 6Be fairly well, as shown in Table X (Pud-
liner et al., 1997). The isotensor energy differences in-
volve more difficult cancellations and are not as well
reproduced.


In summary, realistic models of the NN interaction
can now be explicitly solved for up to 7-body systems.
To date, the calculations confirm that the standard pic-
ture of these nuclei as interacting through realistic two-

TABLE VIII. Green’s-function Monte Carlo (GFMC) energy components in MeV for A56,7
ground states.


AZ(Jp;T) K v ij Vijk v ij
g v ij


p Vijk
2p


2H(11;0) 19.81 222.05 0.0 0.018 221.28 0.0
3H( 1


2
1; 1


2 ) 50.0(8) 257.6(8) 21.20(7) 0.04 243.8(2) 22.2(1)
4He(01;0) 112.1(8) 2136.4(8) 26.5(1) 0.86(1) 299.4(2) 211.8(1)
6He(01;1) 140.3(15) 2165.9(15) 27.2(2) 0.87(1) 2109.0(4) 213.6(2)
6Li(11;0) 150.8(10) 2180.9(10) 27.2(1) 1.71(1) 2128.9(5) 213.7(3)
6Be(01;1) 134.8(16) 2160.5(16) 26.8(2) 2.97(2) 2108.0(4) 212.8(2)
7He( 3


2
2; 3


2 ) 146.0(17) 2171.2(17) 27.4(2) 0.86(1) 2109.9(6) 214.1(2)


7Li( 3
2


2; 1
2 ) 186.4(28) 2222.6(30) 28.9(2) 1.78(2) 2152.5(7) 217.1(4)
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TABLE IX. Variational Monte Carlo (VMC) values for proton rms radii (in fm), quadrupole moments (in fm 2), and magnetic
moments (in n.m.) all in the impulse approximation. Only Monte Carlo statistical errors are shown.


^rp
2&1/2 m Q


VMC Experiment VMC Experiment VMC Experiment


2H(11;0) 1.967 1.953 0.847 0.857 0.270 0.286
3H( 1


2
1; 1


2 ) 1.59(1) 1.60 2.582(1) 2.979


3He( 1
2


1; 1
2 ) 1.74(1) 1.77 21.770(1) 22.128


4He(01;0) 1.47(1) 1.47
6He(01;1) 1.95(1)
6Li(11;0) 2.46(2) 2.43 0.828(1) 0.822 20.33(18) 20.083
6Be(01;1) 2.96(4)
7Li( 3


2
2; 1


2 ) 2.26(1) 2.27 2.924(2) 3.256 23.31(29) 24.06


7Be( 3
2


2; 1
2 ) 2.42(1) 21.110(2) 25.64(45)

and three-nucleon interactions is capable of adequately
reproducing the nuclear spectra and much of the strong-
interaction dynamics. Certainly discrepancies remain,
but the calculations have advanced to the stage that
these can be confronted. In particular, relativistic effects
and the spin-isospin structure of the three-nucleon inter-
action can be addressed.


V. THE NUCLEAR ELECTROWEAK CURRENT OPERATOR


The simplest description of nuclei is based on a non-
relativistic many-body theory of interacting nucleons.
Within this framework, the nuclear electromagnetic and
weak-current operators are expressed in terms of those
associated with the individual protons and neutrons—
the so-called impulse approximation (IA). Such a de-
scription, though, is certainly incomplete. The nucleon-
nucleon interaction is mediated at large internucleon
distances by pion exchange, and indeed seems to be well
represented, even at short and intermediate distances,
by meson-exchange mechanisms, which naturally lead to
effective many-body current operators. It should be re-
alized that these meson-exchange current operators
arise, as does the nucleon-nucleon interaction itself, as a
consequence of the elimination of the mesonic degrees
of freedom from the nuclear state vector. Clearly, such


TABLE X. Isovector and isotensor energy differences in
MeV; one-photon exchange and total, including charge
symmetry-breaking and charge-dependent components of
vNN .


^vg& DE (GFMC) DE (Expt.)


3He– 3H 0.680(1) 0.756(1) 0.764
6Be– 6He 2.095(4) 2.239(17) 2.345
7Be– 7Li 1.501(3) — 1.644
7B– 7He 3.326(8) — 4.10
6Be1 6He–236Li* 0.558(3) 0.767(32) 0.670
7B1 7He– 7Li*– 7Be* 0.713(3) — 0.69
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an approach is justified only at energies below the
threshold for meson (specifically, pion) production,
since above this threshold these non-nucleonic degrees
of freedom have to be explicitly included in the state
vector.


The investigation of meson-exchange current effects
on nuclear electroweak observables has a long history.
The need for their inclusion was soon realized after
Yukawa (1935) postulated that pions mediate the
nuclear force. Villars (1947) and Miyazawa (1951) first
considered their contributions to the magnetic moments
of nuclei and found that they accounted for most of the
existing discrepancies between experimental values and
previous IA predictions. However, it was not until 1972,
when Riska and Brown showed how pion-exchange cur-
rents could resolve the long-standing 10% discrepancy
between the calculated and measured cross section for
radiative proton-neutron capture, that the importance of
such interaction currents was established at a quantita-
tive level. Since then, there have been several calcula-
tions of two-body current effects in other processes, such
as the deuteron electrodisintegration at threshold,1 the
charge2 and magnetic form factors3 of the trinucleons,
the b decay of tritium4 and the magnetic moments and


1These include the calculations of Hockert et al. (1973), Lock
and Foldy (1975), Fabian and Arenhövel (1976, 1978), Leide-
mann and Arenhövel (1983), Mathiot (1984), Leidemann,
Schmitt, and Arenhövel (1990), and Schiavilla and Riska
(1991).


2These include the calculations of Kloet and Tjon (1974),
Riska and Radomski (1977), Hadjimichael, Goulard, and Bor-
nais, (1983), Strueve et al. (1987), and Schiavilla, Pandhari-
pande, and Riska (1990).


3These include the calculations of Barroso and Hadjimichael
(1975), Riska (1980), Maize and Kim (1984), and Schiavilla,
Pandharipande, and Riska (1989).


4These include the calculations of Blomqivst (1970), Riska
and Brown (1970), Chemtob and Rho (1971), Ciechanowicz
and Truhlik (1984), Saito, Ishikawa, and Sasakawa (1990), and
Carlson et al. (1991).
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weak-axial-current matrix elements of medium- and
heavy-weight nuclei.5 However, because of uncertainties
in the many-body wave functions of heavy nuclei, the
few-nucleon systems have played a rather special role,
since for their ground (and, very recently, continuum)
states, the Schrödinger equation can be solved with a
high degree of accuracy using a variety of different tech-
niques (see Sec. III). These studies have conclusively
proven that a satisfactory quantitative description of
electroweak observables requires a current operator
consisting, at a minimum, of one- and two-body compo-
nents.


Two-body electromagnetic and weak-current opera-
tors have conventionally been derived as the nonrelativ-
istic limit of Feynman diagrams, in which the meson-
baryon couplings have been obtained either from
effective chiral Lagrangians (Riska, 1984) or from semi-
empirical models for the off-shell pion-nucleon ampli-
tude (Chemtob and Rho, 1971). These methods of con-
structing effective current operators, however, do not
address the problem of how to model the composite
structure of the hadrons in the phenomenological
meson-baryon vertices. This structure is often param-
etrized in terms of form factors. For the electromagnetic
case, however, gauge invariance actually puts constraints
on these form factors by linking the divergence of the
two-body currents to the commutator of the charge op-
erator with the nucleon-nucleon interaction. The latter
contains form factors, too, but these are determined
phenomenologically by fitting nucleon-nucleon data.
Thus the continuity equation reduces the model depen-
dence of the two-body currents by relating them to the
form of the interaction. This point of view has been em-
phasized by Riska and collaborators (Riska, 1985a,
1985b; Riska and Poppius, 1985; Blunden and Riska,
1992; Tsushima, Riska, and Blunden, 1993) and others
(Buchmann, Leidemann, and Arenhövel, 1985; Ohta,
1989a, 1989b), and is adopted in the treatment of two-
body currents that we discuss below.


The nuclear electromagnetic r(q) and j(q) and axial
Aa(q) current operators are expanded into a sum of
one-, two-, and many-body terms that operate on the
nucleon degrees of freedom:


r~q!5(
i


r i
~1 !~q!1(


i,j
r ij


~2 !~q!1••• , (5.1)


j~q!5(
i


ji
~1 !~q!1(


i,j
jij
~2 !~q!1••• , (5.2)


Aa~q!5(
i


Aa ,i
~1 !~q!1(


i,j
Aa ,ij


~2 ! ~q!1••• , (5.3)


where a is an isospin index.


5These include the calculations of Dubach, Koch, and Don-
nelly (1976), Dubach (1980), Mathiot and Desplanques (1981),
Suzuki et al. (1981a, 1981b), Donnelly and Sick (1984), and
Towner (1987).
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The one-body operators r i
(1) and ji


(1) are obtained
from the covariant single-nucleon current


jm5ū~p8!FF1~Q2!gm1F2~Q2!
ismnqn


2m Gu~p!, (5.4)


where p and p8 are the initial and final momenta, respec-
tively, of a nucleon of mass m , and F1(Q2) and F2(Q2)
are its Dirac and Pauli form factors taken as a function
of the four-momentum transfer Q252qmqm.0, with
qm5pm8 2pm . The Bjorken and Drell convention
(Bjorken and Drell, 1964) is used for the g matrices, and
smn5(i/2)@gm,gn# . The jm is expanded in powers of 1/m
and, including terms up to order 1/m2, the charge (m50)
component can be written as


r i
~1 !~q!5r i ,NR


~1 ! ~q!1r i ,RC
~1 ! ~q!, (5.5)


with


r i ,NR
~1 ! ~q!5e ie


iq•ri, (5.6)


r i ,RC
~1 ! ~q!5S 1


A11Q2/4m2
21 D e ie


iq•ri


2
i


4m2
~2m i2e i!q•~si3pi!e iq•ri, (5.7)


while the current components (m51,2,3) are expressed
as


ji
~1 !~q!5


1
2m


e i$pi ,e iq•ri%2
i


2m
m iq3sie


iq•ri, (5.8)


where $••• , •••% denotes the anticommutator. Here we
have defined


e i[
1
2 @GE


S ~Q2!1GE
V~Q2!tz ,i# , (5.9)


m i[
1
2 @GM


S ~Q2!1GM
V ~Q2!tz ,i# , (5.10)


and p, s, and t are the nucleon’s momentum, Pauli spin,
and isospin operators, respectively. The two terms pro-
portional to 1/m2 in r i ,RC


(1) are the well-known Darwin-
Foldy and spin-orbit relativistic corrections (deForest
and Walecka, 1966; Friar, 1973).


The superscripts S and V of the Sachs form factors
GE and GM denote, respectively, isoscalar and isovector
combinations of the proton and neutron electric and
magnetic form factors (Sachs, 1962). The GE and GM
are related to the Dirac and Pauli form factors in Eq.
(5.4) via


GE~Q2!5F1~Q2!2
Q2


4m2
F2~Q2!, (5.11)


GM~Q2!5F1~Q2!1F2~Q2! (5.12)


and are normalized so that


GE
S ~Q250 !5GE


V~Q250 !51, (5.13)


GM
S ~Q250 !5mp1mn50.880mN , (5.14)


GM
V ~Q250 !5mp2mn54.706mN , (5.15)
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where mp and mn are the magnetic moments of the pro-
ton and neutron in terms of the nuclear magneton mN .
The Q2 dependence of the Sachs form factors is deter-
mined by fitting electron-nucleon scattering data (Gal-
ster et al., 1971; Iachello, Jackson, and Lande, 1973;
Höhler et al., 1976; Gari and Krümpelmann, 1986). The
proton electric and magnetic form factors are experi-
mentally fairly well known over a wide range of momen-
tum transfers (Kirk et al., 1973; Borkowski et al., 1975a,
1975b; Höhler et al., 1976; Simon et al., 1980; Walker
et al., 1989) (see Figs. 9 and 10). In contrast, the present
data on the neutron form factors (Albrecht et al., 1968;
Rock et al., 1982; Platchkov et al., 1990; Gari and
Krümpelmann, 1992), particularly the electric one, are


FIG. 9. The proton electric form-factor data (Kirk et al., 1973;
Borkowski et al., 1975a, 1975b; Höhler et al., 1976; Simon
et al., 1980; Walker et al., 1989) compared with the dipole (D)
and parametrizations of Iachello, Jackson, and Lande (1973)
(IJL); Gari and Krümpelmann (1986) (GK); Höhler et al.
(1976) (H). The ratio GEp /GD is plotted.


FIG. 10. Same as in Fig. 9, but for the proton magnetic form
factor.
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not as accurate and, therefore, the available semiempir-
ical parametrizations for them differ widely, particularly
at high-momentum transfers, as shown in Figs. 11 and
12. Until this uncertainty in the detailed behavior of the
electromagnetic form factors of the nucleon is narrowed,
quantitative predictions of electronuclear observables at
high-momentum transfers will remain rather tentative.
We shall reexamine this issue later in this review.


The one-body operator Aa ,i
(1) is obtained from the non-


relativistic limit of the nucleon axial current given by


Aa
m5ū~p8!FGA~Q2!gm1


GP~Q2!


2m
qmGg5


ta


2
u~p!.


(5.16)


FIG. 11. The neutron electric form-factor data (Albrecht et al.,
1968; Rock et al., 1982; Platchkov et al., 1990; Gari and
Krümpelmann, 1992) compared with parametrizations of Iach-
ello, Jackson, and Lande (1973) (IJL); Gari and Krümpelmann
(1986) (GK); Höhler et al. (1976) (H); and Galster et al. (1971)
(G). The ratio GEn /GD is plotted.


FIG. 12. Same as in Fig. 9, but for the neutron magnetic form
factor.
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The Q2 dependence of the axial (GA) and induced
pseudoscalar (GP) form factors are parametrized, re-
spectively, as


GA~Q2!5
gA


~11Q2/LA
2 !2


, (5.17)


GP~Q2!5
GP~0 !@gpNN~Q2!/gpNN~0 !#


11Q2/mp
2 , (5.18)


where gA51.26260.006, as determined from neutron b
decay (Bopp et al., 1986), and (mm/2m)GP(Q25mm


2 )
58.262.4, as obtained from muon capture in hydrogen
(Bernabéu, 1982). Here mm is the muon mass. The value
for the cutoff mass LA is found to be approximately 1
GeV/c2 from an analysis of pion electroproduction data
(Amaldi, Fubini, and Furlan, 1979) and measurements
of the reaction nm1p→n1m1 (Kitagaki et al., 1983). In
the induced pseudoscalar form factor GP(Q2), the Q2


dependence is dominated by the pion-pole contribution,
and gpNN(Q2) is the pNN strong-interaction form fac-
tor. Retaining only the leading contribution in 1/m in
the nonrelativistic reduction of Aa


m leads to the well-
known expression for the Gamow-Teller transition op-
erator


Aa ,i
~1 !~q!52


gA


2
ta ,isie


iq•ri. (5.19)


The next-to-leading-order correction involves, in the
limit Q250, a nonlocal operator, which arises from the
time component (m50) of Aa


m and is given by


Aa ,i
~1 !~q!52


gA


4m
ta ,isi•$pi ,e iq•ri%. (5.20)


Our interest in the present review is focused on weak
transitions involving very small momentum transfers Q2,
and therefore the Q2 dependence of the axial form fac-
tor has been suppressed.


The axial charge operator has pseudoscalar character,
and there is no obvious observable in the few-nucleon
systems which could be significantly affected by transi-
tions induced by such an operator (Nozawa, Kohyama,
and Kubodera, 1982). For example, in the b decays of
3H and 6He and in the weak-capture reactions
1H(p ,e1ne)2H and 3He(p ,e1ne)4He, the matrix ele-
ments of the axial charge operator vanish, since the
former involve transitions in which the initial and final
states have the same parity, while the latter proceed pre-
dominantly via Jp:01
11 transitions. However, the
axial charge operator, particularly its two-body compo-
nent, influences the rates of several DT51 Jp:01
02


transitions (Guichon, Giffon, and Samour, 1978; Jager,
Kirchbach, and Truhlik, 1984; Kirchbach, Jäger, and
Gmitro, 1984; Kirchbach, Kamalov, and Jäger, 1984;
Nozawa et al., 1984; Towner, 1984; Kirchbach, 1986),
such as, for example, the rates of the mirror transitions
16N(02,120 keV)→16O(01,g.s.)1e21ne or m2116O
→16N(02,120 keV)1nm (Riska, 1984). We shall not dis-
cuss the axial charge operator any further in the present
review.
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The electromagnetic current operator must satisfy the
continuity equation


q•j~q!5@H ,r~q!# , (5.21)


where the Hamiltonian H includes two- and three-
nucleon interactions


H5(
i


pi
2


2m
1(


i,j
v ij1 (


i,j,k
Vijk . (5.22)


To lowest order in 1/m , the continuity equation (5.21)
separates into separate continuity equations for the
one-, two-, and many-body current operators,


q•ji
~1 !~q!5F pi


2


2m
,r i ,NR


~1 ! ~q!G , (5.23)


q•jij
~2 !~q!5@v ij ,r i ,NR


~1 ! ~q!1r j ,NR
~1 ! ~q!# , (5.24)


and a similar equation involving three-nucleon currents
and interactions.


The one-body current in Eq. (5.8) is easily shown to
satisfy Eq. (5.23). The isospin and momentum depen-
dence of the two- and three-nucleon interactions, how-
ever, lead to nonvanishing commutators with the nonrel-
ativistic one-body charge operator and thus link the
longitudinal part of the corresponding two- and three-
body currents to the form of these interactions. In the
present review, we shall limit our discussion to two-body
currents, since, so far, no systematic investigation of
three-body current (and charge) operators has been car-
ried out.


This section is divided into four subsections. The first,
Sec. V.A, deals with the two-body current operators that
are required by gauge invariance. We denote them as
‘‘model independent’’ [adopting a nomenclature intro-
duced by Riska (1989)], since they are constructed from
the nucleon-nucleon interaction and contain no free pa-
rameters. We discuss in Sec. V.B those two-body cur-
rents, denoted as ‘‘model dependent,’’ which, being
purely transverse, are not constrained by the continuity
equation. To this class belong the currents associated
with the rpg and vpg mechanisms, as well as those due
to excitation of intermediate D-isobar resonances. How-
ever, it should be noted that the isoscalar rpg transition
current has been linked (in the framework of the topo-
logical soliton or Skyrme-model approach to nucleon
and nuclear structure) to the chiral anomaly (Nyman
and Riska, 1986, 1987; Wakamatsu and Weise, 1988).
This connection is extensively discussed in the review
article by Riska (1989).


In Sec. V.C, we derive the structure of the most im-
portant two-body charge operators. The latter are model
dependent and may be viewed as relativistic corrections.
The use of these two-body charge operators in conjunc-
tion with nonrelativistic wave functions is founded more
on phenomenological success than on solid theoretical
argument. From this standpoint, however, theoretical
predictions for the charge form factors of nuclei with
A52 –6 (based on calculations carried out within such a
simple approach) have come remarkably close to the
data, as will be shown later in the present review. A
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study that systematically and consistently deals with the
constraints that relativistic covariance imposes on both
the electromagnetic current and the interaction models,
as well as on the nuclear wave functions in systems with
A.2, is still lacking, although progress in this direction
has been made in the past few years (Rupp and Tjon,
1992; Carlson, Pandharipande, and Schiavilla, 1993; For-
est et al., 1995; Stadler and Gross, 1997). The deuteron,
however, has been studied extensively in relativistic ap-
proaches; relativistically covariant calculations of the
deuteron structure functions and tensor polarization
have been carried out within the framework of quasipo-
tential reductions of the Bethe-Salpeter equation with
one-boson-exchange interaction models (Hummel and
Tjon, 1989, 1990; Van Orden, Devine, and Gross, 1995).


In Sec. V.D, we list the expressions for the axial two-
body current operators commonly used in the study of
weak transitions involving few-body nuclei (Carlson
et al., 1991). Their derivation is discussed in the review
article by Towner (1987) and is not repeated here. We
only emphasize that, in contrast to the electromagnetic
case, the axial current operator is not conserved. Its two-
body components cannot be directly linked to the
nucleon-nucleon interaction and, in this sense, are com-
pletely model dependent. Indeed, the partially con-
served axial-vector current (PCAC) relations, which
play a role analogous to that of current conservation in
the electromagnetic case, lead to model-independent
predictions only for the axial exchange charge operator.


A. Electromagnetic two-body current operators
from the two-nucleon interaction


All realistic NN interactions include isospin-
dependent central, spin-spin, and tensor components,


@vt~rij!1vst~rij!si•sj1v tt~rij!Sij#ti•tj , (5.25)


where the st and tt terms include the long-range one-
pion-exchange potential. The ti•tj operator, which does
not commute with the charge operators in Eq. (5.24), is
formally equivalent to an implicit momentum depen-
dence (Sachs, 1948). This can be seen when we consider
the product of space-, spin-, and isospin-exchange opera-
tors, denoted, respectively, as Eij , Eij


s , and Eij
t , where


Eij5expF iE
ri


rj
ds•~pi2pj!G , (5.26)


Eij
s5


11si•sj


2
, (5.27)


Eij
t 5


11ti•tj


2
. (5.28)


They must satisfy EijEij
sEij


t 521. The line integral in Eq.
(5.26) is along any path leading from ri to rj . Thus two-
body current operators associated with the
ti•tj-dependent interactions, Eq. (5.25), can be con-
structed by minimal substitution in the space-exchange
operator:


pi→pi2e iA~ri!, (5.29)
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where A(ri) is the vector potential. However, due to the
arbitrariness of the integration path in Eq. (5.26), such a
prescription does not lead to unique two-body currents
(Nyman, 1967). Therefore an assumption has to be
made about the dynamic origin of the interactions in Eq.
(5.25) in order to construct the associated currents.


At intermediate and large internucleon separation
distances, the vt, vst, and v tt interactions are assumed
to be due to p-meson and r-meson exchanges. The
pNN and rNN coupling Lagrangians are given by


LpNN~x !5
fpNN


mp
c̄~x !gmg5tc~x !•]mp~x !, (5.30)


LrNN~x !5grNNc̄~x !F S gm1
kr


2m
smn]nDrm~x !G•tc~x !,


(5.31)


where p(x) and r(x) are the p- and r-meson T51
fields; c(x) is the T5 1


2 nucleon field; mp and mr are the
meson masses; fpNN , grNN , and kr are the pseudovec-
tor pNN , and the vector and tensor rNN coupling con-
stants (fpNN


2 /4p50.075, grNN
2 /4p50.55, and kr56.6),


respectively. By performing a nonrelativistic reduction
of the one-boson-exchange Feynman amplitudes, one
obtains the p- and r-meson-exchange interactions in
momentum space as


@vrS~k !1@vp~k !12vr~k !#k2si•sj


2@vp~k !2vr~k !#Sij~k!#ti•tj , (5.32)


where


vrS~k ![grNN
2 1


k21mr
2 , (5.33)


vp~k ![2
fpNN


2


3mp
2


1


k21mp
2 , (5.34)


vr~k ![2
grNN


2


12m2


~11kr!2


k21mr
2 . (5.35)


The tensor operator in momentum space is defined as


Sij~k!5k2si•sj23si•ksj•k. (5.36)


The isovector two-body currents corresponding to p
and r exchanges can be derived by minimal substitution
]m→]m6iAm(x) in the pNN and rNN coupling
Lagrangians, Eqs. (5.30) and (5.31), and in the free p-
and r-meson Lagrangians:


Lp~x !5
1
2


]mp~x !•]mp~x !2
mp


2


2
p~x !•p~x !, (5.37)


Lr~x !52
1
4


@]mrn~x !2]nrm~x !#•@]mrn~x !2]nrm~x !#


2
mr


2


2
rm~x !•rm~x !. (5.38)


The nonrelativistic reduction of the Feynman ampli-
tudes shown in Fig. 13 leads to the momentum-space
two-body operators:
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jij ,p
~2 ! ~ki ,kj!53i~ti3tj!zGE


V~Q2!Fvp~kj!si~sj•kj!


2vp~ki!sj~si•ki!1
ki2kj


ki
22kj


2 @vp~ki!


2vp~kj!#~si•ki!~sj•kj!G , (5.39)


jij ,r
~2 ! ~ki ,kj!523i~ti3tj!zGE


V~Q2!Fvr~kj!si3~sj3kj!


2vr~ki!sj3~si3ki!2
vr~ki!2vr~kj!


ki
22kj


2


3@~ki2kj!~si3ki!•~sj3kj!


1~si3ki!sj•~ki3kj!1~sj3kj!si•~ki3kj!#


1
ki2kj


ki
22kj


2 @vrS~ki!2vrS~kj!#G , (5.40)


where ki and kj are the fractional momenta delivered to
nucleons i and j with q5ki1kj , and the form factor
GE


V(Q2) has been included to take into account the elec-
tromagnetic structure of the nucleon. The continuity
equation requires that the same form factor be used to
describe the electromagnetic structure of the hadrons in
the longitudinal part of the current operator and in the
charge operator. Again, the continuity equation places
no restrictions on the electromagnetic form factors that
may be used in the transverse parts of the current. Ig-
noring this ambiguity, the choice made here @GE


V(Q2)#
satisfies the ‘‘minimal’’ requirement of current conserva-
tion. However, for a somewhat different discussion of
this point we refer the reader to Gross and Henning
(1992).


The first two terms in Eqs. (5.39) and (5.40) are
seagull currents corresponding to diagrams (a) and (b)
of Fig. 13, while the remaining terms are the currents
due to p meson and r meson in flight. These operators,
with the vp(k), vr(k), and vrS(k) propagators suitably
modified by the inclusion of form factors, have com-
monly been used in the investigation of exchange cur-
rent effects in nuclei. A first systematic derivation of
pion- and heavy-meson-exchange current operators was
in fact given by Chemtob and Rho in their seminal 1971
paper. While these simple two-body currents satisfy the
continuity equation with the corresponding meson-


FIG. 13. Feynman diagram representation of the isovector
two-body currents associated with pion exchange: Solid lines,
nucleons; dashed lines, pions; wavy lines, photons.
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exchange interactions, they do not satisfy the continuity
equation with the realistic models for the nucleon-
nucleon interaction that are used to construct nuclear
wave functions. A method of obtaining current opera-
tors that satisfy the continuity equation for any given
v ij


t , v ij
st , and v ij


tt interactions has been proposed by
Riska (1985b) and, independently, by Arenhovel and co-
workers (Buchmann, Leidemann, and Arenhövel, 1985).
In this method these interactions are attributed to ex-
changes of families of p-like pseudoscalar (PS) and
r-like vector (V) mesons. The sum of all T51
PS-exchange and V-exchange terms is then obtained as


vPS~k !5@vst~k !22v tt ~k !#/3, (5.41)


vV~k !5@vst~k !1v tt ~k !#/3, (5.42)


vVS~k !5vt~k !, (5.43)


where


vt~k !54pE
0


`


r2dr j0~kr !vt~r !, (5.44)


vst~k !5
4p


k2 E0


`


r2dr @ j0~kr !21#vst~r !, (5.45)


v tt~k !5
4p


k2 E0


`


r2dr j2~kr !v tt ~r !. (5.46)


The expression for vst(k) reflects the fact that in all
nucleon-nucleon interaction models derived from a rela-
tivistic scattering amplitude a d-function term has been
dropped from the spin-spin component. The current op-
erators jij ,PS


(2) and jij ,V
(2) , obtained by using vPS(k), vV(k),


and vVS(k) in place of vp(k), vr(k), and vrS(k) in Eqs.
(5.39) and (5.40), satisfy the continuity equation with the
vt, vst, and v tt potentials in the model interaction used
to fit the nucleon-nucleon scattering data and to calcu-
late nuclear ground- and scattering-state wave functions.
In particular, there is no ambiguity left as to the proper
form of the short-range behavior of the two-body cur-
rent operator, as this is determined by the interaction
model. Configuration-space expressions may be ob-
tained from


jij ,a
~2 ! ~q!5E dx e iq•xE dki


~2p!3


dkj


~2p!3


3e iki•~ri2x!e ikj•~rj2x!jij ,a
~2 ! ~ki ,kj!, (5.47)


where a5PS or V , and are given explicitly by Schiavilla,
Pandharipande, and Riska (1989).


Although the Riska prescription obviously cannot be
unique, it has nevertheless been shown to provide, at
low and moderate values of momentum transfer (typi-
cally, below .1 GeV/c), a satisfactory description of
most observables in which isovector two-body currents
play a large (if not dominant) role, such as the deuteron
threshold electrodisintegration (Buchmann, Leidemann,
and Arenhövel, 1985; Schiavilla and Riska, 1991), the
neutron and proton radiative captures on protons
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(Schiavilla and Riska, 1991) and deuterons (Viviani,
Schiavilla, and Kievsky, 1996) at low energies, and the
magnetic moments and form factors of the trinucleons
(Schiavilla, Pandharipande, and Riska, 1989; Schiavilla
and Viviani, 1996).


In addition to spin-spin and tensor components, all
realistic interactions contain spin-orbit and quadratic
momentum-dependent terms. The construction of the
associated two-body current operators is less straightfor-
ward. A procedure similar to that used above to derive
the p-like and r-like currents has been generalized to
the case of the two-body currents from the spin-orbit
interactions (Carlson et al., 1990). It consists, in essence,
of attributing the two-body currents to exchanges of
s-like and v-like mesons for the isospin-independent
terms, and to r-like mesons for the isospin-dependent
ones. The explicit form of the resulting currents, as well
as their derivation, can be found in the original refer-
ence (Carlson et al., 1990).


The quadratic momentum-dependent terms represent,
on the one hand, relativistic corrections to the central
and spin-orbit interactions, which are proportional to p2


(p is the relative momentum) and, on the other hand,
quadratic spin-orbit interactions. To construct the asso-
ciated two-body current operators is, in general, difficult
or impossible, because of the many approximations typi-
cally used to simplify the structure of these interaction
components. Furthermore, some interactions, such as
the Argonne models (Wiringa, Smith, and Ainsworth,
1984; Wiringa, Stoks, and Schiavilla, 1995), contain
terms proportional to L2, which do not appear in any
natural way in boson-exchange models. Hence, in view
of the fact that the numerical significance of these op-
erators is small anyway, the two-body currents associ-
ated with the quadratic momentum dependence are ob-
tained by minimal substitution [see Eq. (5.29)] into the
corresponding interaction components (Schiavilla, Pan-
dharipande, and Riska, 1989).


The currents associated with the momentum depen-
dence of the interaction are fairly short ranged and have
both isoscalar and isovector terms. Their contribution to
isovector observables is found to be numerically much
smaller than that due to the leading p-like current
(Schiavilla, Pandharipande, and Riska, 1989; Schiavilla
and Viviani, 1996). However, they give non-negligible
corrections to isoscalar observables, such as the deu-
teron magnetic moment and B(Q)-structure function
(Schiavilla and Riska, 1991; Wiringa, Stoks, and Schia-
villa, 1995), and isoscalar combination of the magnetic
moments and form factors of the trinucleons (Schiavilla,
Pandharipande, and Riska, 1989; Schiavilla and Viviani,
1996), as will be reported later in this article.


B. ‘‘Model-dependent’’ electromagnetic two-body current
operators


The two-body currents discussed in the previous sub-
section are constrained by the continuity equation and
do not contain any free parameters, since they are de-
termined directly from the nucleon-nucleon interaction.
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They can therefore be viewed as ‘‘model independent.’’
There are, however, additional two-body currents that
are purely transverse. These will be referred to as
‘‘model-dependent’’ two-body currents.


The class of model-dependent currents that has been
considered in the literature contains two-body operators
associated with electromagnetic transition couplings be-
tween different mesons or with excitation of intermedi-
ate nucleon resonances (specifically, the D isobar).


1. The rpg and vpg current operators


Among the currents due to transition couplings, the
rpg and vpg mechanisms, illustrated by the Feynman
diagrams in Fig. 14, have been considered most com-
monly in the literature (Chemtob, Moniz, and Rho,
1974; Gari and Hyuga, 1976). The associated two-body
operators have short range, because of the large r- and
v-meson masses and, therefore, their contribution to
electromagnetic observables at low and moderate values
of momentum transfers (Q<1 GeV/c) is typically
small. These currents can be derived from the Feynman
diagrams in Fig. 14 by considering the transition current
matrix elements given by


^pa~k !ujm~0 !urb~p ,e!&


52
Grpg~Q2!


mr
dabemnstpnkset, (5.48)


and a similar expression for the vpg transition current
matrix element, with Grpg(Q2)/mr replaced by
Gvpg(Q2)/mv (e is the polarization vector of the vector
meson). The values of the transition form factors Grpg
and Gvpg at the photon point are known to be
Grpg(Q250)[grpg50.56 (Berg et al., 1980) and
Gvpg(Q250)[gvpg50.68 (Chemtob and Rho, 1971)
from the measured widths of the r→p1g and v→p
1g decays, while the Q2 dependence is modeled using
vector-meson dominance:


Grpg~Q2!5grpg /~11Q2/mv
2 !, (5.49)


Gvpg~Q2!5gvpg /~11Q2/mr
2!. (5.50)


FIG. 14. Feynman diagram representation of the isoscalar
rpg and isovector vpg transition currents: Solid line, nucle-
ons; dashed line, pions; thick-dashed line, vector mesons (ei-
ther r or v); wavy line, photons.
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A nonrelativistic reduction to lowest order of the am-
plitudes in Fig. 14 leads to the momentum-space expres-
sions:


jrpg~ki ,kj!5i
fpgrGrpg~Q2!


mpmr
ti•tjki3kj


3F si•ki


~ki
21mp


2 !~kj
21mr


2!


2
sj•kj


~ki
21mr


2!~kj
21mp


2 !
G , (5.51)


jvpg~ki ,kj!5i
fpgvGvpg~Q2!


mvmp
ki3kj


3F si•ki


~ki
21mp


2 !~kj
21mv


2 !
t i ,z


2
sj•kj


~ki
21mv


2 !~kj
21mp


2 !
t j ,zG . (5.52)


Note that the next-to-leading-order terms in the nonrel-
ativistic expansion of the rpg amplitude are propor-
tional to (11kr)/m2, where kr is the large rNN tensor
coupling. They have been found to substantially reduce
the contribution of the leading term, Eq. (5.51), in a
calculation of the deuteron B(Q) structure function
(Schiavilla and Riska, 1991). The importance of these
1/m2 corrections was first stressed by Hummel and Tjon
(1989) in a relativistic boson-exchange-model calcula-
tion of the deuteron form factors, based on the
Blankenbecler-Sugar reduction of the Bethe-Salpeter
equation.


Monopole form factors at the pion and vector-meson
strong-interaction vertices, given by


fa~k !5
La


22ma
2


La
21k2


, a5p ,r , (5.53)


are introduced to take into account the finite size of
nucleons and mesons. It should be emphasized that the
contributions due to these operators are rather sensitive
to the values used for the (poorly known) vector-meson
coupling constants to the nucleon and cutoff parameters
La , a5p , r , and v (Carlson, Pandharipande, and Schia-
villa, 1991). In recent calculations, the values of these
have been taken as Lp50.9 GeV and Lr5Lv51.35
GeV from studies of the magnetic form factor of the
deuteron (Wiringa, Stoks, and Schiavilla, 1995) and ra-
diative capture of neutrons on 2H (Viviani, Schiavilla,
and Kievsky, 1996) and 3He (Schiavilla et al., 1992).


2. Currents associated with D-isobar degrees of freedom


The theoretical framework adopted in the present re-
view article views the nucleus as made up of nucleons
and assumes that all other subnucleonic degrees of free-
dom can be eliminated in favor of effective two- and
many-body operators acting on the nucleons’ coordi-
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nates. The validity of this greatly simplified
description—in which color-carrying quarks and gluons
(the degrees of freedom of quantum chromodynamics,
the fundamental theory of the strong interaction) are
assembled into colorless clusters (the nucleons), and
these clusters are taken as effective constituents of the
nucleus—is based on the success it has achieved in the
quantitative prediction of many nuclear observables.
However, it is interesting to consider corrections to this
picture by taking into account the degrees of freedom
associated with colorless quark-gluon clusters other than
the nucleons as additional constituents of the nucleus.
At least when treating phenomena that do not explicitly
involve meson production, it is reasonable to expect that
the lowest excitation of the nucleon, the D isobar, plays
a leading role (Green, 1976; Sauer, 1986).


In such an approach, the wave function of a nucleus is
written as


CN1D5C~NN•••NN !1C~1 !~NN•••ND!


1C~2 !~NN•••DD!1••• , (5.54)


where C is that part of the total wave function consist-
ing only of nucleons; the term C(1) is the component in
which a single nucleon has been transformed into a D
isobar, and so on. These D-isobar admixtures are gener-
ated by transition interactions, the long-range part of
which are obtained from a pND coupling Lagrangian of
the form


LpND~x !5
fpND


mp
c̄m~x !Tc~x !•]mp~x !1H.c., (5.55)


where cm(x) is the isospin-spin 3/2 field of the D . The
nonrelativistic reduction of the Feynman amplitudes in
Fig. 15 leads to NN→ND and NN→DD interactions,
given by (Sugawara and von Hippel, 1968)


vNN→ND~ ij !5@vstII~rij!si•Sj1v t t II~rij!Sij
II#ti•Tj ,


(5.56)


vNN→DD~ ij !5@vstIII~rij!Si•Sj1v t t III~rij!Sij
III#Ti•Tj ,


(5.57)


with


vsta~r !5
~ff !a


4p


mp


3
e2x


x
, (5.58)


FIG. 15. Feynman diagram representation of the NN→ND
and NN→DD transition interactions due to one-pion ex-
change: Solid lines, nucleons; thick solid lines, D isobars;
dashed lines, pions.
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v tta~r !5
~ff !a


4p


mp


3 S 11
3
x


1
3


x2D e2x


x
, (5.59)


a5II, III, x5mpr , and (ff)a[fpNNfpND , fpNDfpND for
a5II, III, respectively. Here S and T are spin- and
isospin-transition operators, which convert the nucleon
into a D isobar. The matrix elements of their spherical
components Sm , Sm56157(Sx6iSy)/A2, and S05Sz ,
are given by


^3/2sDuSmu1/2s&5^1m ,1/2su3/2sD&em* , (5.60)


where e6571( x̂6iŷ)/A2, e05 ẑ, and similarly for Tm .
The Sij


II and Sij
III are tensor operators in which the Pauli


spin operators of particle i (or j), and particles i and j ,
are replaced by corresponding spin-transition operators.


The coupling constants fpND and fpDD are not well
known. The static quark model predicts for them the
values fpND


2 /4p50.233 and fpDD
2 /4p50.00324, while the


Chew-Low theory gives fpND
2 /4p50.324 (Brown and


Weise, 1975). However, the observed D-decay width
provides a value for fpND


2 /4p that is about 10% larger
than that obtained in the Chew-Low theory (Sugawara
and von Hippel, 1968).


There are, of course, additional contributions, arising
from other processes, such as ND→DD and DD→DD
transitions, or due to exchanges of heavier mesons, such
as the r meson. In models of interactions with explicit N
and D degrees of freedom, these contributions are con-
strained by fits to the NN elastic-scattering data and
deuteron properties (Wiringa, Smith, and Ainsworth,
1984; Sauer, 1986).


Once the NN , ND , and DD interactions have been
determined, there still remains the problem of how to
generate isobar configurations in a many-nucleon sys-
tem. Essentially, the methods fall into two categories:
perturbation theory and coupled channels.


In perturbation theory, one- and two-D components
are generated via


C~1 !5
1


m2mD
(
i,j


@v~ ij !NN→DN1v~ ij !NN→ND#C ,


(5.61)


C~2 !5
1


2~m2mD!(i,j
v~ ij !NN→DDC , (5.62)


where the kinetic-energy contributions in the denomina-
tors of Eqs. (5.61) and (5.62) have been neglected (static
D approximation). This approximation has been often
(in fact, almost exclusively) used in the literature to es-
timate the effect of D degrees of freedom on elec-
troweak observables (Riska, 1989). However, it pro-
duces ND and DD wave functions that are too large at
short distances (Schiavilla et al., 1992).


The most reliable way of generating isobar admixtures
in nuclei is through the coupled-channel method. Be-
cause of its complexity, however, due to the large num-
ber of N-D channels involved, it has been applied only
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to relatively simple systems, to date the deuteron6 and
triton.7 It is reviewed by Sauer (1986) and in a series of
articles by Picklesimer, Rice, and Brandenburg (1991,
1992a, 1992b, 1992c, 1992d). A somewhat simpler ap-
proach, but one that has been used in studies of A53
and 4 nuclei electroweak transitions (Schiavilla et al.,
1992; Viviani, Schiavilla, and Kievsky, 1996) and mag-
netic form factors (Schiavilla and Viviani, 1996), consists
of a generalization of the correlation-operator technique
(Kallio et al., 1974; Schiavilla et al., 1992), which has
proven very useful in the variational theory of light nu-
clei, particularly in the context of variational Monte
Carlo calculations. In such an approach, known as the
transition-correlation-operator method, the nuclear
wave function is written as


CN1D5FS)
i,j


~11Uij
tr!GC , (5.63)


where S is the symmetrizer, and the transition operators
Uij


tr convert NN pairs into ND and DD pairs.
In principle, the Uij


tr and C could be determined varia-
tionally by using a Hamiltonian containing an interac-
tion that includes both nucleon and D degrees of free-
dom, such as the Argonne v28 model. Variational
calculations of this type have not yet been attempted,
however. Instead, in the studies carried out so far, C is
taken from solutions of a Hamiltonian with nucleons-
only interactions, while the Uij


tr is obtained from two-
body bound and low-energy scattering state solutions of
the full N-D coupled-channel problem.


The N
D and D→D electromagnetic currents are
given by


ji
~1 !~q;N→D!52


i
2m


GgND~Q2!e iq•riq3SiTz ,i ,


(5.64)


ji
~1 !~q;D→D!52


i
24m


GgDD~Q2!e iq•riq


3Si~11Qz ,i!, (5.65)


and the expression for ji
(1)(q;D→N) is obtained from


that for ji
(1)(q;N→D) by replacing S and T with their


Hermitian conjugates. Here S (Q) is the Pauli operator
for the D spin (isospin).


The electromagnetic form factors GgND(Q2) and
GgDD(Q2) are parametrized as


GgND~Q2!5
mgND


~11Q2/LND ,1
2 !2A11Q2/LND ,2


2 , (5.66)


GgDD~Q2!5
mgDD


~11Q2/LDD
2 !2


. (5.67)


6For examples, see van Faassen and Tjon, 1984; Leidemann
and Arenhövel, 1987; Dymarz et al., 1990; Dymarz and
Khanna, 1990a, 1990b.


7For examples, see Hajduk and Sauer, 1979; Hajduk, Sauer,
and Strueve, 1983; Picklesimer, Rice, and Brandenburg, 1991,
1992a, 1992b, 1992c, 1992d.
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In the static quark model, the N→D transition magnetic
moment mgND is related to the nucleon isovector mag-
netic moment by the relation mgND5(3A2/5)mN


V53.993
n.m. This value is significantly larger than that obtained
in an analysis of gN data in the D-resonance region,
mgND53 n.m. (Carlson, 1986). This analysis also gives
LND ,150.84 GeV/c and LND ,251.2 GeV/c . The D mag-
netic moment mgDD is taken equal to 4.35 n.m., by aver-
aging the values obtained from a soft-photon analysis of
pion-proton bremsstrahlung data near the D11 reso-
nance (Lin and Liou, 1991), and LDD50.84 GeV. In
principle, D excitation can also occur via an electric
quadrupole transition. Its contribution, however, has
been neglected, since the associated pion-
photoproduction amplitude is found to be experimen-
tally small at resonance (Ericson and Weise, 1988). Also
neglected is the D convection current.


Electromagnetic observables require the calculation
of a matrix element, which can be schematically written
as


jfi5
^CN1D ,fujuCN1D ,i&


@^CN1D ,fuCN1D ,f&^CN1D ,iuCN1D ,i&#1/2
, (5.68)


where the initial- and final-state wave functions
uCN1D ,x& (x5i or f) contain both N and D degrees of
freedom. The numerator in Eq. (5.68) can be expressed
as


^CN1D ,fujuCN1D ,i&5^C fuj~N only!uC i&1D-terms,
(5.69)


where j(N only) denotes all one- and two-body contri-
butions to j(q) that involve only nucleon degrees of
freedom, i.e., j(N only)5j(1)(N→N)1j(2)(NN→NN),
while the D terms include all possible N
D transitions
and D→D electromagnetic currents in the system, as
well as normalization corrections to the ‘‘nucleonic’’ ma-
trix elements. Of course, the latter also influence the
normalization of the full wave function CN1D .


The contributions involving a single D have been in-
cluded in a coupled-channel calculation of the A53
magnetic form factors (Hajduk, Sauer, and Strueve,
1983; Strueve et al., 1987). Contributions with both one-
and two-D admixtures in the wave functions have also
been studied with the transition-correlation-operator
method in the A53 magnetic form factors (Schiavilla
and Viviani, 1996), and A53 and 4 radiative- and weak-
capture reactions at low energies (Schiavilla et al., 1992;
Viviani, Schiavilla, and Kievsky, 1996).


Perturbation theory estimates of the importance of
D-isobar degrees of freedom in photonuclear observ-
ables typically include only the contributions from single
N
D transitions and also ignore the change in wave-
function normalization. Thus the two-body operator cor-
responding to this approximation is written as
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jDPT ,ij5ji~q;D→N !
vNN→DN ,ij


m2mD


1
vDN→NN ,ij


m2mD
ji~q;N→D!1i
j


5i
GgND~Q2!


9m
e iq•ri$4tz ,j@fD~rij!sj1gD~rij!


3 r̂ij~sj• r̂ij!#2~ti3tj!z@fD~rij!~si3sj!


1gD~rij!~si3 r̂ij!~sj• r̂ij!#%3q1i
j , (5.70)


where


fD~r ![
vstII~r !2v t t II~r !


m2mD
, (5.71)


gD~r ![3
v t t II~r !


m2mD
. (5.72)


The preceding discussion shows that explicit inclusion
of D admixtures in the nuclear wave function influences
the predictions for electromagnetic observables in two
ways: first, via direct electromagnetic couplings, and sec-
ond by renormalization corrections. Typically, these ef-
fects lead to a substantial reduction of the predictions
based on the perturbative treatment. This subject will be
taken up again in Secs. VI and IX.


C. Electromagnetic two-body charge operators


Several uncertainties arise when considering the two-
body charge operator, in contrast to the two-body cur-
rent operator. While the main parts of the two-body cur-
rent are linked to the form of the nucleon-nucleon
interaction through the continuity equation, the most
important two-body charge operators are model depen-
dent and may be viewed as relativistic corrections. Until
a systematic method for a simultaneous nonrelativistic
reduction of both the interaction and the electromag-
netic current operator is developed, the definite form of
the two-body charge operators remains uncertain, and
one has to rely on perturbation theory.


Two-body charge operators fall into two classes. The
first includes those effective operators that represent
non-nucleonic degrees of freedom, such as nucleon-
antinucleon pairs or nucleon resonances, and that arise
when those degrees of freedom are eliminated from the
state vector. The second class includes those dynamic
exchange charge effects that would appear even in a de-
scription explicitly including non-nucleonic excitations
in the state vector. In a description based on meson-
exchange mechanisms, these involve electromagnetic
transition couplings between different mesons. The
proper forms of the former operators depend on the
method of eliminating the non-nucleonic degrees of
freedom; therefore evaluating their matrix elements
with the usual nonrelativistic nuclear wave functions
represents only the first approximation to a systematic
reduction (Friar, 1977). We shall first consider the two-
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body charge operators of this class, to which belongs the
long-range pion-exchange charge operator.


The two-body charge operator due to pion exchange
is derived by considering the low-energy limit of the
relativistic Born diagrams associated with the virtual-
pion photoproduction amplitude (Riska, 1984). When
these are evaluated with pseudovector pion-nucleon
coupling, the following operator is obtained for diagram
(a) of Fig. 16:


1
2


@F1
S~Q2!1F1


V~Q2!tz ,i#
1


E in2E
v ij ,p~kj!


1
fpNN


2


2mmp
2


1
2


@F1
S~Q2!1F1


V~Q2!tz ,i#ti•tj


si•qsj•kj


mp
2 1kj


2


1O~E in2E !. (5.73)


A similar operator is also obtained that corresponds to
the time ordering in diagram (b) of Fig. 16. Here q is the
momentum transfer to the nucleus, kj is the momentum
transferred by the pion to nucleon j , and E in and E are
the energies of the initial and intermediate states, re-
spectively. In Eq. (5.73), v ij ,p(kj) is the one-pion-
exchange potential in momentum space:


v ij ,p~k!53vp~k !ti•tjsi•ksj•k. (5.74)


The first term in Eq. (5.73) contains the intermediate-
state Green’s function and one-pion-exchange potential.
It is therefore contained in the bound-state matrix ele-
ments of the single-nucleon charge operator (i.e., in the
impulse approximation). The second term represents a
part of the exchange charge operator. There is an addi-
tional contribution due to the energy dependence of the
pion propagator (Friar, 1977; Coon and Friar, 1986;
Schiavilla, 1996a). To these operators, one must add the
operator associated with direct coupling of the photon
to the exchanged pion (Friar, 1977; Coon and Friar,
1986; Schiavilla, 1996a). However, this latter operator,
as well as that due to retardation effects in the pion
propagator, gives rise to nonlocal isovector contribu-
tions that are expected to provide only small corrections
to the leading local term and that have typically
been neglected in studies of charge-exchange effects
in nuclei. For example, in the few-nucleon systems,
these operators would only contribute to the
isovector combination of the 3He and 3H charge form
factors, a combination that is a factor of 3 smaller than


FIG. 16. Feynman diagram representation of the Born ampli-
tudes for photoproduction of virtual mesons: Solid lines, nucle-
ons; dashed lines, mesons; wavy lines, photons.

Rev. Mod. Phys., Vol. 70, No. 3, July 1998

the isoscalar. Thus the two-body charge operator due to
pion exchange is simply taken as


r ij ,p~ki ,kj!52
3


2m
$@F1


S~Q2!ti•tj1F1
V~Q2!tz ,j#


3vp~kj!si•qsj•kj1@F1
S~Q2!ti•tj


1F1
V~Q2!tz ,i#vp~ki!si•kisj•q%, (5.75)


where ki1kj5q.
The effect of the pion-exchange charge operator is


enhanced by a similar operator that is associated with
r-meson exchange and that can be derived in the same
way, by considering the nonrelativistic reduction of the
virtual r-meson photoproduction amplitudes in two-
body diagrams of the form in Fig. 16. One then elimi-
nates the singular term that represents an iteration of
the wave function. The form of the resulting operator is
(Riska, 1984)


r ij ,r~ki ,kj!52
3


2m
$@F1


S~Q2!ti•tj1F1
V~Q2!tz ,j#vr~kj!


3~si3q!•~sj3kj!1@F1
S~Q2!ti•tj


1F1
V~Q2!tz ,i#vr~ki!~sj3q!•~si3ki!%,


(5.76)


where again nonlocal terms and/or terms proportional to
powers of 1/(11kr) have been neglected. Due to its
short range, the contribution associated with this opera-
tor is typically an order of magnitude smaller than that
due to pion exchange.


The p- and r-meson-exchange charge operators con-
tain coupling constants and bare meson propagators,
which are usually modified by ad hoc vertex form factors
in order to take into account the finite extent of the
nucleons. However, this model dependence can be
eliminated by replacing vp and vr with the vPS and vV
defined in Eqs. (5.41) and (5.42). These replacements
are the ones required for the construction of a two-body
current operator that satisfies the continuity equation. It
is reasonable to apply them to the two-body charge op-
erators as the generalized meson propagators con-
structed in this way take into account the nucleon struc-
ture in a way that is consistent with the nucleon-nucleon
interaction. An additional reason for using the present
construction is that it has been shown to lead to predic-
tions for the magnetic form factors of the trinucleons
that are in good agreement with the experimental data
(Schiavilla, Pandharipande, and Riska, 1989; Schiavilla
and Viviani, 1996).


The T51 pseudoscalar and vector exchanges provide
the largest contribution to the charge operator, and con-
tain no adjustable parameters. The other contributions
that have been considered, namely, those associated
with the v exchange, and rpg and vpg mechanisms,
are relatively smaller, and we use experimental coupling
constants and vertex form factors to calculate them. The
v-meson-exchange charge operator is taken as (Gari
and Hyuga, 1976)
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r ij ,v~ki ,kj!5
gvNN


2


8m3 F @F1
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3
~si3q!•~sj3kj!


kj
21mv


2 1@F1
S~Q2!


1F1
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~sj3q!•~si3ki!
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21mv


2 G , (5.77)


where small terms proportional to the tensor coupling
kv (kv520.12) have been neglected.


All the exchange charge operators above belong to
the first class of exchange operators and appear as non-
singular seagull terms in the nonrelativistic reduction of
the virtual photoproduction amplitudes for the ex-
changed mesons. The exchange charge operators that
correspond to the rpg and vpg couplings shown in Fig.
14 belong to the (second) class of genuine dynamic ex-
change operators, those with transverse four-vector cur-
rents. The rpg- and vpg-exchange charge operators
corresponding to the diagrams in Fig. 14 have the form


rrpg~ki ,kj!52
fpNNgrNN~11kr!


2mpmrm
Grpg~Q2!


3ti•tjFsi•ki~sj3kj!•~ki3kj!
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21mp


2 !~kj
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2
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2!~kj
21mp


2 !
G , (5.78)


rvpg~ki ,kj!52
fpNNgvNN


2mpmvm
Gvpg~Q2!
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21mv
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2
sj•kj~si3ki!•~ki3kj!


~ki
21mv


2 !~kj
21mp


2 !
tz ,jG , (5.79)


The derivation of the rpg- and vpg-exchange charge
operators is straightforward, given the transition current
matrix elements ^pa(k)ujm(0)uV(p ,e)&, with V5r ,v .
More recently it has been shown that the isoscalar
rpg-exchange charge operator can also be derived from
the anomalous baryon current that carries the baryon
charge in the topological soliton (or Skyrme) model
(Nyman and Riska, 1986, 1987; Wakamatsu and Weise,
1988). This derivation is independent of the detailed
form of the effective chiral Lagrangian in the soliton
model and links the rpg-exchange current operator to
the chiral anomaly.


In the v-, rpg-, and vpg-exchange charge operators,
the meson-nucleon vertices have been taken to be point-
like. The finite extent of nucleons and mesons is taken
into account by modifying the free meson propagators in
the above expressions by introducing high-momentum
cutoff factors of the conventional monopole form. In the
rpg- and vpg-exchange charge operators, the pion and
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vector-meson propagators are multiplied, respectively,
by fp(k) and fV(k), V5r ,v . However, in the
v-exchange charge operator, the propagator is multi-
plied by fv


2 (k). The values used for Lp and LV are 0.9
and 1.35 GeV/c , as discussed before. It should be reiter-
ated that the contributions due to two-body charge op-
erators from vector-meson (r-like and v) exchanges, as
well as transition couplings (rpg and vpg), are typi-
cally an order of magnitude (or more) smaller than
those due to p-like exchanges (Schiavilla, Pandhari-
pande, and Riska, 1990; Schiavilla and Viviani, 1996).


D. The axial two-body current operators


Among the axial two-body current operators, the
leading terms of pionic range are those associated with
excitation of D-isobar resonances. These arise from
N
D and D→D axial couplings, which are modeled as


Aa ,i
~1 !~q;N→D!52


gbND


2
Ta ,iSie


iq•ri, (5.80)


Aa ,i
~1 !~q;D→D!52


gbDD


2
Qa ,iSie


iq•ri. (5.81)


The D→N current is obtained by replacing the spin and
isospin transition operators in Eq. (5.80) by their Her-
mitian conjugates. The coupling constants gbND and
gbDD are not known. In the static quark model, they are
related to the axial coupling of the nucleon by the rela-
tions gbND5(6A2/5)gA and gbDD5(9/5)gA . These val-
ues have often been used in the literature in the calcu-
lation of D-induced axial current contributions to weak
transitions (Carison et al., 1991; Saito, Wu, Ishikawa,
and Sasakawa, 1990). However, given the uncertainties
in the naive quark-model predictions, a more reliable
estimate for the gbND coupling constant is obtained by
determining it phenomenologically in the following way:
It is well known that the one-body axial current [Eq.
(5.3)] leads to a 4% underprediction of the measured
Gamow-Teller matrix element in tritium b decay. Since
the contribution of the D→D axial current (as well as
those due to other axial two-body operators to be dis-
cussed below) are found to be numerically very small,
this 4% discrepancy can be used to determine gbND .
This procedure produces, in the context of a transition-
correlation-operator calculation of the type discussed
above, a value for gbND about 30% larger than the
quark-model estimate (Schiavilla et al., 1992).


There are additional axial two-body current opera-
tors, although their contributions to weak transitions in
the few-nucleon systems have been found to be numeri-
cally far less important than those from D degrees of
freedom. These operators are associated with axial
pNN and rNN contact interactions and axial rp cou-
plings and were first described in a systematic way by
Chemtob and Rho (1971). Their derivation has been
given in a number of articles, including the original ref-
erence mentioned above and the more recent review by
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Towner (1987). Their expressions in momentum space
follow. Axial pion-exchange seagull (pair) current:


Aa ,ij
~2 ! ~q;pS !5
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2m


fpNN
2


mp
2


sj•kj


mp
2 1kj


2 fp
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2ita ,j@q1isi3~pi1pi8!#%1i
j , (5.82)


axial r-meson-exchange seagull (pair) current:
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axial rp current:
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gr
2
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sj•kj
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2!~mp
2 1kj


2!
fr~ki!fp~kj!~ti3tj!a


3@~11kr!si3ki2i~pi1pi8!#1i
j . (5.84)


Here q is the total momentum transfer 5ki1kj , ki(j) is
the momentum transfer to nucleon i (j), pi and pi8 are
the initial and final momenta of nucleon i , and
fp(r)(k)5pion (r-meson)-nucleon monopole vertex
form factor. The expression for pS represents the con-
ventional pair current operator given in the literature. It
is obtained with pseudoscalar pion-nucleon coupling.
With pseudovector coupling, the pion momentum kj in
the first term in brackets would be replaced by the ex-
ternal momentum q, and an additional term (pi1pi8)
would appear with the isospin structure (ti3tj)a . Fur-
thermore, the rS operator includes only those terms
proportional to (11kr)2. Finally, configuration-space
expressions may again be obtained by carrying out the
Fourier transforms in Eq. (5.47).


VI. ELASTIC AND INELASTIC ELECTROMAGNETIC
FORM FACTORS


In this section we give an overview of the current sta-
tus of elastic and inelastic electromagnetic form-factor
calculations in the A52 –6 nuclei. Our discussion will be
in the context of a unified approach to nuclear dynamics
based on realistic two- and three-nucleon interactions
and consistent two-body charge and current operators.


A variety of techniques, including Faddeev-
Yakubovsky (FY), correlated hyperspherical harmonics
(CHH), variational Monte Carlo (VMC), and Green’s-
function Monte Carlo (GFMC) methods, have been
used to calculate the bound-state wave functions of 3H,
3He, and 4He with high accuracy (see Secs. III and IV
and references therein). For the same (realistic) input
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Hamiltonian, the binding energies obtained with the FY,
CHH, and GFMC methods typically differ by less than
0.5% for A53 and 1% for A54. Very recently, the
VMC and GFMC calculations have also been extended
to the A56 and 7 systems. Thus the electromagnetic
form factors of these few-body nuclei, along with the
deuteron structure functions and threshold electrodisin-
tegration at backward angles, are the observables of
choice for testing the quality of models for the nucleon-
nucleon interaction and associated two-body charge and
current operators.


While the literature on the electromagnetic structure
of the deuteron and trinucleons is very extensive—and
no attempt will be made here to systematically discuss it
all—this is not the case for the a particle and low-lying
states of 6Li, for which realistic wave functions have be-
come available only relatively recently. Indeed, the 6Li
form factors have been exclusively studied up until now
by using phenomenological shell-model (Donnelly and
Walecka, 1973; Vergados, 1974; Bergstrom, 1975) or
cluster (Bergstrom, 1979; Bergstrom, Kowalski, and
Neuhausen, 1982; Lehman and Parke, 1983a, 1983b;
Kukulin et al., 1990; Kukulin et al., 1995) wave functions.
However, given our premise, such calculations are not as
directly tied to the NN interaction and currents.


Rather complete calculations of the A52 and 3 elec-
tromagnetic form factors have been carried out by a
number of groups,8 using wave functions derived from a
Hamiltonian with two-nucleon interactions, such as the
Paris (Cottingham et al., 1973), Bonn (Machleidt,
Holinde, and Elster, 1987) and Argonne v14 (Wiringa,
Smith, and Ainsworth, 1984) and v18 (Wiringa, Stoks,
and Schiavilla, 1995) models, and including (for A53)
three-nucleon interactions, such as the Tucson-
Melbourne (Conn et al., 1979) and Urbana/Argonne
(Carlson, Pandharipande, and Wiringa, 1983; Pudliner
et al., 1995) models. Some of these calculations have also
explicitly taken into account D-isobar admixtures in the
A52 (Dymarz et al., 1990; Dymarz and Khanna, 1990a,
1990b; Leidemann and Arenhövel, 1987) and A53
(Hajduk, Sauer, and Strueve, 1983; Strueve et al., 1987;
Schiavilla and Viviani, 1986) wave functions. While
GFMC wave functions, corresponding to the Argonne
v18 and Urbana model-IX Hamiltonian (AV18/IX), are
now available (Pudliner et al., 1995; Pieper and Wiringa,
1996), the less accurate VMC wave functions have been
used to date for the 6Li form-factor calculations (Wir-
inga and Schiavilla, 1996). The AV18/IX and the older
Argonne v14 two-nucleon and Urbana model-VIII
three-nucleon (AV14/VIII) models reproduce the ex-
perimental binding energies and charge radii of 3H,


8For A52, see, for example, Chemtob, Moniz, and Rho
(1974), Gari and Hyuga (1976), Schiavilla and Riska (1991),
Plessas, Christian, and Wagenbrunn (1995). For A53, see
Brandenburg, Kim, and Tubis (1974a), Kloet and Tjon (1974),
Hadjimichael, Goulard, and Bornais (1983), Maize and Kim
(1984), Strueve et al. (1987), Schiavilla, Pandharipande, and
Riska (1989), Schiavilla, Pandharipande, and Riska (1990).
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3He, and 4He. However, for the A56 systems the
(AV18/IX-based) GFMC calculations indicate that the
experimental binding energy of the 6Li ground state is
near agreement with the calculated value, while those of
the 6He and 6Be ground states and low-lying excited
states of 6Li are underestimated by theory at the 2%
and 3–5 % levels, respectively (Pieper and Wiringa,
1996).


Form-factor calculations in few-body nuclei have used
electromagnetic charge and current operators including
one- and two-body components. We here summarize
their most important features. The dominant two-body
current operator is the isovector one due to p-meson
exchange. While its general structure is dictated by the
low-energy theorems and is therefore on solid theoreti-
cal ground (Chemtob and Rho, 1971), there is neverthe-
less considerable uncertainty with regard to its short-
range behavior due to the composite nature of nucleons
and pions. In most calculations, this has been taken into
account by including form factors at the pN vertices.
However, the resulting operator will not generally sat-
isfy the continuity equation with the two-nucleon inter-
action used to generate the wave functions. Riska
(1985b) and, independently, Buchmann, Leidemann,
and Arenhövel (1985), have suggested prescriptions for
constructing ‘‘p-like’’ and, in fact, ‘‘r-like’’ two-body
currents from the isospin-dependent spin-spin and ten-
sor components of the two-nucleon interaction (the
most commonly used ‘‘Riska’’ prescription has been re-
viewed in Sec. V). These prescriptions, although not
unique, lead to conserved two-body currents, which
have been characterized by Riska as ‘‘model indepen-
dent’’ (Riska, 1989). Additional, but numerically far less
important, ‘‘model-independent’’ two-body currents are
obtained from the momentum dependence of the inter-
action (Buchmann, Leidemann, and Arenhövel, 1985;
Riska, 1985a; Riska and Poppius, 1985; Schiavilla, Pan-
dharipande, and Riska, 1989; Carlson et al., 1990). In
contrast to the p-like current, these are fairly short
ranged, and have both isoscalar and isovector terms.


Some of the calculations reported in the literature
have also included two-body current operators due to
the rpg and vpg mechanisms (which are, respectively,
isoscalar and isovector), as well as contributions (pre-
dominantly isovector) associated with the presence of
D-isobar degrees of freedom. The former as well as the
latter are purely transverse, and therefore unconstrained
by the interaction—that is, they are ‘‘model dependent’’
in the Riska classification scheme. Again, the short-
range behavior of these currents and, in particular, the
gND and pND transition couplings, are poorly known.


Isovector magnetic observables, such as the threshold
electrodisintegration of the deuteron at backward angles
(Hockert et al., 1973) and the magnetic form factors of
the trinucleons (Hadjimichael, Goulard, and Bornais,
1983), are dominated by the p-like two-body currents
mentioned above in the momentum-transfer range 2.5–
3.5 fm 21. Contributions from the remaining two-body
currents become significant only at higher momentum
transfer Q (Q.5 fm 21). Two-body contributions to
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isoscalar observables, such as the deuteron B(Q) struc-
ture function, only provide a small correction to the im-
pulse approximation (IA) predictions based on the
single-nucleon convection and spin-magnetization cur-
rents at low and moderate values of Q (below 5 fm 21).
At higher Q , isoscalar contributions due to the
momentum-dependent components of the two-nucleon
interaction and the rpg coupling increase significantly.
However, it should be emphasized that the rpg correc-
tions become numerically very sensitive to the precise
values used for the cutoff parameters at the pNN and
rNN vertices.


While the main parts of the two-body currents are
linked to the form of the nucleon-nucleon interaction
through the continuity equation, the most important
two-body charge operators are model dependent and
should be considered as relativistic corrections. Indeed,
a consistent calculation of two-body charge effects in
nuclei would require the inclusion of relativistic effects
in both the interaction models and nuclear wave func-
tions. Such a program is just at its inception for systems
with A.2. Of course, fully relativistic calculations of the
deuteron form factors based on quasipotential reduc-
tions of the Bethe-Salpeter equation, of the type re-
ported by Hummel and Tjon (1989, 1990) and Van Or-
den, Devine, and Gross (1995), do include the effects
mentioned above. However, they are not immune from
ambiguities of their own (Coester and Riska, 1994).


There are nevertheless rather clear indications for the
relevance of two-body charge operators from the failure
of the impulse approximation in predicting the charge
form factors of the three- and four-nucleon systems
(Hadjimichael, Goulard, and Bornais, 1983; Strueve
et al., 1987; Schiavilla, Pandharipande, and Riska, 1990).
The model commonly used includes the p-, r-, and
v-meson-exchange charge operators, as well as the rpg
and vpg charge transition couplings, in addition to the
single-nucleon Darwin-Foldy and spin-orbit relativistic
corrections. It should be emphasized, however, that, for
Q,5 fm21, the contribution due to the p-exchange
charge operator is typically at least an order of magni-
tude larger than that of any of the remaining two-body
mechanisms and one-body relativistic corrections.


The present section is divided into five subsections.
The first presents a summary of the basic formalism for
discussing electro- (and photo-)induced transitions be-
tween discrete nuclear levels. No derivation of the rel-
evant formulas will be given, as these can be found in a
number of authoritative review articles (deForest and
Walecka, 1966; Donnelly and Sick, 1984). The next three
subsections deal, in turn, with the deuteron, the three-
and four-nucleon, and six-nucleon systems, while Sec.
VI.E contains some concluding remarks, along with
tables of the A52 –6 nuclei ground-state moments.


A final note concerns the form-factor calculations pre-
sented below. The most comprehensive studies of light-
nuclei form factors have been based on Argonne two-
nucleon and Urbana three-nucleon interactions, and
‘‘model-independent’’ two-body charge and current op-
erators constructed from the Argonne model (Schiavilla,
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Pandharipande, and Riska, 1989, 1990; Wiringa, 1991,
Schiavilla and Viviani, 1996; Wiringa and Schiavilla,
1996). We therefore take the results of these calculations
as a ‘‘baseline’’ and discuss, in relation to them, those
obtained by other groups using different interaction and
current models.


A. Elastic and inelastic electron scattering from nuclei:
A review


In the one-photon-exchange approximation, the
electron-scattering cross section involving a transition
from an initial nuclear state uJi& of spin Ji and rest mass
mi to a final nuclear state uJf& of spin Jf , rest mass mf ,
and recoiling energy Ef can be expressed in the labora-
tory frame as (deForest and Walecka, 1996; Donnelly
and Sick, 1984)


ds


dV
54psMfrec


21@vLFL
2 ~q !1vTFT


2 ~q !# , (6.1)
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and the recoil factor frec is given by


frec511
e f2e icosu


Ef
.11
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sin2
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2
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The electron kinematic variables are defined in Fig. 17.
The last expression for frec in Eq. (6.5) is obtained by
neglecting terms of order (v/mi)


2 and higher, where


FIG. 17. Electron scattering in the one-photon-exchange ap-
proximation: Solid lines, electrons; thick-solid lines, hadrons;
wavy line, photons.

Rev. Mod. Phys., Vol. 70, No. 3, July 1998

v


mi
5


Q21mf
22mi


2


2mi
2 . (6.6)


The nuclear structure information is contained in the
longitudinal and transverse form factors denoted, re-
spectively, by FL


2 (q) and FT
2 (q). By fixing q and v and


varying u it is possible to separate FL
2 (q) from FT


2 (q) in
a procedure known as a Rosenbluth separation. Alter-
natively, by working at u5180° one ensures that only
the transverse form factor contributes to the cross sec-
tion and so may be isolated (in this case, we observe that
the combination sMtan2u/2→(a/2e i)


2 as u→180°, and
is therefore finite in this limit).


The longitudinal and transverse form factors are ex-
pressed in terms of reduced matrix elements of Cou-
lomb, electric, and magnetic multipole operators as (de-
Forest and Walecka, 1966; Donnelly and Sick, 1984)
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where we have defined
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ê0[ êz , and ê61[7( êx6iêy)/A2. Here r(x) and j(x)
are the nuclear charge and current-density operators,
and jJ(qx) are spherical Bessel functions. The reduced
matrix elements in Eqs. (6.7) and (6.8) are related to the
matrix elements of the Fourier transforms r(q) and
j(q), introduced in Sec. V, via (deForest and Walecka,
1966)
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where l561, êl(q) are the spherical components of
the virtual-photon transverse polarization vector, and
the D lM


J are standard rotation matrices. The expressions
above correspond to the virtual photon’s being absorbed
at an angle uq with respect to the quantization axis of
the nuclear spins. The more familiar expressions for the
multipole expansion of the charge and current matrix
elements are recovered by taking q along the spin-
quantization axis, so that YJM* (q̂)→dM ,0A2J11/A4p
and D lM


J (0uq0)→dl ,M .
It is useful to consider the parity and time-reversal


properties of the multipole operators (de Forest and
Walecka, 1966). Thus the scalar and polar vector char-
acters of, respectively, the charge and current-density
operators under parity transformations imply that TJM


Coul


and TJM
El have parity (21)J, while TJM


Mag has parity
(21)J11. The resulting selection rules are p ip f5(21)J


@p ip f5(21)J11# for Coulomb and electric (magnetic)
transitions, where p i and p f are the parities of the initial
and final states.


The Hermitian character of the operators r(x) and
j(x), as well as their transformation properties under
time reversal, r(x)→r(x) and j(x)→2j(x), can be
shown to lead to the following relations:
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These relations, along with the parity selection rules
stated above, require, in particular, that elastic transi-
tions, for which Jf5Ji , can only be induced by even-J
Coulomb and odd-J magnetic multipole operators.


Finally, in the low-q or long-wavelength limit, the
multipole operators defined above can be shown to be-
have as (deForest and Walecka, 1966; Donnelly and
Sick, 1984)
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and
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where in the last equation use has been made of the
continuity equation ¹•j(x)52i@H ,r(x)# and of the fact
that the initial and final states are eigenstates of the
Hamiltonian. In particular, for elastic scattering (Jf
5Ji), the reduced matrix elements of TJM


Coul(q) and
TJM


Mag(q) are proportional to the ground-state charge and
magnetic moments, defined as


QJ[^Ji ,Mi5JiuQJ0uJi ,Mi5Ji&, (6.22)


mJ[2m^Ji ,Mi5JiumJ0uJi ,Mi5Ji&, (6.23)


where the magnetic moments mJ are in terms of nuclear
magnetons mN . It is then easily found that


^JiuuTJ
CouluuJi&.A2J11


4p


A2Ji11


^JiJi ,J0uJiJi&


qJ


~2J11 !!!
QJ ,


(6.24)


^JiuuTJ
MaguuJi&


.2
1
i
A2J11


4p
AJ11


J


A2Ji11


^JiJi ,J0uJiJi&


qJ


~2J11 !!!
mJ


2m
,


(6.25)


where J satisfies the condition 0<J<2Ji , and is even in
Eq. (6.24), while it is odd in Eq. (6.25). In particular, it is
found that


^JiuuTJ50
Coul~q !uuJi&.A2Ji11


4p
Z , (6.26)


and for Ji>1


^JiuuTJ52
Coul~q !uuJi&


.
1


6A5p
A~Ji11 !~2Ji11 !~2Ji13 !


Ji~2Ji21 !
q2QJ52 , (6.27)


where 2QJ52 is the usual ground-state electric quadru-
pole moment, while for Ji>1/2


^JiuuTJ51
Mag~q !uuJi&. 2


1
i


1


A6p
A(Ji11)(2Ji11)


Ji


q
2m


mJ51 ,


(6.28)


where mJ51 is the usual ground-state magnetic dipole
moment.


B. The deuteron


1. Deuteron electromagnetic form factors


The deuteron elastic 11→11 electromagnetic transi-
tion is induced by T0


Coul , T2
Coul , and T1


Mag form factors in
the notation introduced above. However, it is customary
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to discuss the electromagnetic structure of the deuteron
ground state in terms of charge, quadrupole, and mag-
netic form factors related to T0


Coul , T2
Coul , and T1


Mag via


A4p


3
T0


Coul~Q !5~11h!GC~Q !, (6.29)


A4p


3
T2


Coul~Q !5
2A2


3
h~11h!GQ~Q !, (6.30)


2A4p


3
iT1


Mag~Q !5
2


A3
Ah~11h!GM~Q !, (6.31)


where h[Q2/(2md)2, md being the deuteron mass.
These form factors are normalized as


GC~0 !51, (6.32)


GQ~0 !5md
2Qd , (6.33)


GM~0 !5
md


m
md , (6.34)


where Qd and md are the quadrupole and magnetic mo-
ments of the deuteron. The elastic electron-scattering
cross section from an unpolarized deuteron is then ex-
pressed in terms of the A(Q) and B(Q) structure func-
tions as


ds


dV
5sMfrec


21@A~Q !1B~Q !tan2u/2# , (6.35)


with


A~Q !5GC
2 ~Q !1


2
3


hGM
2 ~Q !1


8
9


h2GQ
2 ~Q !, (6.36)


B~Q !5
4
3


h~11h!GM
2 ~Q !. (6.37)


A Rosenbluth separation of the elastic e-d cross section
will not allow a separation of the charge and quadrupole
form factors. To achieve this goal, electron-scattering
experiments from tensor-polarized deuteron targets
have been carried out in recent years (Schulze et al.,
1984; Dmitriev et al., 1985; Gilman et al., 1990; The et al.,
1991), leading to an experimental determination of the
tensor polarization observable T20(Q), given by


T20~Q !52A2
x~x12 !1y/2


112~x21y !
, (6.38)


where the variables x and y are defined as


x5
2
3


h
GQ~Q !


GC~Q !
, (6.39)


y5
2
3


hFGM~Q !


GC~Q ! G
2


f~u!, (6.40)


and the auxiliary function f(u) is 1
2 1(11h)tan2u/2.


In Figs. 18 and 19 the calculated charge and quadru-
pole form factors (Plessas, Christian, and Wagenbrunn,
1995; Wiringa, Stoks, and Schiavilla, 1995) are compared
with data, after The et al. (1991). The calculations are
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based on the Argonne v18 (Wiringa, Stoks, and Schia-
villa, 1995), Nijmegen (Stoks et al., 1994), and Bonn-B
(Machleidt, Holinde, and Elster, 1987) interactions and
the Höhler parametrization (Höhler et al., 1976) of the
nucleon electromagnetic form factors. The curves la-
beled TOT in the figures include the contributions due
to the two-body charge operators as well as to the
Darwin-Foldy and spin-orbit relativistic corrections to
the single-nucleon charge operator. The effect of these


FIG. 18. The charge form factor of the deuteron, obtained in
the impulse approximation (IA) and with inclusion of two-
body charge contributions and relativistic corrections (TOT),
compared with data from Schulze et al. (1984), The et al.
(1991), Dmitriev et al. (1985), and Gilman et al. (1990) [empty
and filled circles denote, respectively, positive and negative ex-
perimental values for GC(Q)]. Theoretical results correspond-
ing to the Argonne v18 (v18 ; Wiringa, Stoks, and Schiavilla,
1995), Bonn B (B; Plessas, Christian, and Wagenbrunn, 1995),
and Nijmegen (N; Plessas, Christian, and Wagenbrunn, 1995)
interactions are displayed. The Höhler parametrization is used
for the nucleon electromagnetic form factors.


FIG. 19. Same as in Fig. 18, but for the quadrupole form factor
of the deuteron.
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contributions on GC(Q) is significant and brings the
zero predicted by the impulse approximation towards
lower values of momentum transfers. However, in
GQ(Q) their effect is relatively unimportant at moder-
ate values of momentum transfers (below 5 fm 21). The
main two-body correction is that due to the p-like ex-
change charge operator. Including the corrections due to
vector-meson exchanges, the rpg mechanism, and the
Darwin-Foldy and spin-orbit terms amounts to only a
very small additional contribution. The results for the
charge and quadrupole form factors are qualitatively
similar to those obtained with simple meson-exchange
charge operators and deuteron wave functions corre-
sponding to alternative potential models (for example,
Gari and Hyuga, 1976). The important role of the two-
body charge operators in bringing the zero in the charge
form factor to a lower value of momentum transfer is
similar to that in the case of the bound three- and four-
nucleon systems, where this effect is required for agree-
ment with the measured charge form factors (see be-
low).


The results for the structure function B(Q) Plessas,
Christian, and Wagenbrunn, 1995; Wiringa, Stoks, and
Schiavilla, 1995), which is related to GM(Q) via Eq.
(6.37), are compared in Fig. 20 with data from Simon,
Schmitt, and Walther (1981), Auffret et al. (1985a),
Cramer et al. (1985), and Arnold et al. (1987). Since the
deuteron is a T50 state, the long-range p-like two-body
current, being isovector, does not contribute. Thus


FIG. 20. The deuteron B(Q2) structure function, obtained in
the impulse approximation (IA) and with inclusion of two-
body current contributions and relativistic corrections (TOT),
compared with data from Simon, Schmitt, and Walther (1981;
Mainz-81), Cramer et al. (1985; Bonn-85) Auffret et al. (1985a;
Saclay-85), and Arnold et al. (1987). Theoretical results corre-
sponding to the Argonne v18 (v18 ; Wiringa, Stoks, and Schia-
villa, 1995), Bonn B (B; Plessas, Christian, and Wagenbrunn,
1995), and Nijmegen (N; Plessas, Christian, and Wagenbrunn,
1995) interactions are displayed. Also shown is the relativisti-
cally covariant full calculation of Van Orden, Devine, and
Gross (1995). The Höhler parametrization is used for the
nucleon electromagnetic form factors.
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B(Q) is sensitive to the isoscalar model-independent
two-body currents associated with the momentum de-
pendence of the interaction, as well as the model-
dependent rpg term. The B(Q) calculated with the Ar-
gonne v18 interaction (Wiringa, Stoks, and Schiavilla,
1995) is found to be in reasonable agreement with data
in the Q2 range 0–45 fm22, and has a zero at around 60
fm 22 (in the impulse approximation the zero is shifted
to Q2 about 43 fm 22). However, the Bonn-B and
Nijmegen-based calculations substantially overestimate
the data (Plessas, Christian, and Wagenbrunn, 1995).


In Wiringa, Stoks, and Schiavilla (1995), the leading
two-body contributions are from the spin-orbit and qua-
dratic spin-orbit currents and interfere destructively.
The present slight overestimate of the data in the Q2


range 0–40 fm22 indicates that the degree of cancella-
tion between these contributions is not quite enough. Of
course, this is an interaction-dependent statement. It de-
pends, in particular, on the detailed behavior of the
(short-range) spin-orbit and quadratic spin-orbit compo-
nents of the interaction. In the case of the older Ar-
gonne v14 model, the associated currents led to an excel-
lent fit of the B(Q) structure function in the same
momentum-transfer range (Schiavilla and Riska, 1991).
Note that the contributions from these currents are ig-
nored in the Plessas, Christian, and Wagenbrunn (1995)
calculation.


The contribution from the rpg current is very sensi-
tive to the values used for the cutoff masses Lp and Lr


in the monopole form factors at the pNN and rNN
vertices. Indeed, the large values used for these cutoffs
(Lp51.2 GeV/c and Lr52 GeV/c) lead to the substan-
tial overprediction of the data in the Bonn-B and
Nijmegen-based calculations, as can be seen from Fig.
20. However, in the Argonne-based calculation, these
values are taken as Lp50.75 GeV/c and Lr51.25
GeV/c , making the rpg contribution rather small over
the momentum-transfer range considered here. It is also
important to point out that there are corrections to the
leading operator proportional to kr—the large r-meson
tensor coupling to the nucleon (kr56.6)—neglected in
the calculations discussed above. The associated contri-
butions interfere destructively with those from the lead-
ing operator, reducing the latter significantly (Hummel
and Tjon, 1989; Schiavilla and Riska, 1991). Thus the
choice of softer cutoff masses may be justified as simu-
lating these higher-order corrections.


The calculated A(Q) structure function and T20(Q)
tensor polarization (Plessas, Christian, and Wagen-
brunn, 1995; Wiringa, Stoks, and Schiavilla, 1995) are
compared in Figs. 21 and 22 with data. For A(Q), ex-
perimental data are from Arnold et al. (1975), Simon,
Schmitt, and Walthier (1981), Cramer et al. (1985), and
Platchkov et al. (1990); for T20(Q), they are from
Schulze et al. (1984), Dmitriev et al. (1985), Gilman et al.
(1990), and The et al. (1991). These observables are
mostly sensitive to the charge and quadrupole form fac-
tors. In both of them the p-like two-body charge opera-
tor plays a major role (Plessas, Christian, and Wagen-
brunn, 1995; Wiringa, Stoks, and Schiavilla, 1995).
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However, while the associated contribution leads to a
prediction for A(Q) in excellent agreement with the
data over the whole range of momentum transfer, it pro-
duces a significant discrepancy between theory and ex-
periment in the case of the tensor polarization. Neglect-
ing the magnetic contribution to T20(Q) gives


T20~Q !.2A2
x~x12 !


112x2
, (6.41)


and at Q0, where GC(Q) vanishes, T20(Q0)521/A2.
Thus the relative shift between the calculated and ex-
perimental T20(Q0) implies a corresponding shift be-
tween the charge form-factor zeros, as is evident from
Fig. 18.


In Figs. 20–22 we also show the results obtained in a
covariant, gauge-invariant calculation of the A(Q),
B(Q), and T20(Q) observables (Van Orden, Devine,
and Gross, 1995), based on the Gross equation (Gross,
1969, 1974, 1982) and a one-boson-exchange interaction
model (Gross, Van Orden, and Holinde, 1992). The
Gross equation is a quasipotential equation in which the
relative energy is constrained by restricting one of the
nucleons to its positive-energy mass shell. The one-
boson-exchange kernel contains p , h , r , and v mesons,
as well as the fictitious scalar mesons s and s1 of isos-
calar and isovector character, respectively. It is deter-
mined by fitting the Nijmegen np phase shifts and the
deuteron binding energy, and gives for the SAID data-
base (Arndt et al., 1992) a x2 per datum of .2.5 in the


FIG. 21. The deuteron A(Q2) structure function, obtained in
the impulse approximation (IA) and with inclusion of two-
body charge and current contributions and relativistic correc-
tions (TOT), compared with data from Simon, Schmitt, and
Walther (1981; Mainz-81), Cramer et al. (1985; Bonn-85),
Platchkov et al. (1990; Saclay-90), and Arnold et al. (1975;
SLAC-75). Theoretical results corresponding to the Argonne
v18 (v18 ; Wiringa, Stoks, and Schiavilla, 1995), Bonn-B (B;
Plessas, Christian, and Wagenbrunn, 1995) interactions are dis-
played. Also shown is the relativistically covariant full calcula-
tion of Van Orden, Devine, and Gross (1995). The Höhler
parametrization is used for the nucleon electromagnetic form
factors.
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energy range 0–350 MeV, which is somewhat higher
than that obtained for recent interaction models
(x2/datum .1). The electromagnetic current consists of
nucleon one-body and rpg two-body terms. Off-shell
form factors are included in the one-body currents,
while the form factor for the (transverse) rpg transition
current is taken from a quark-model calculation.


Significant differences exist between the relativistic
and nonrelativistic calculations of B(Q) and T20(Q). To
clarify the situation, a number of comments are in order.
First, the two-body charge operators associated with p-,
r- and v-meson exchange, which arise only in the non-
relativistic reduction of the photoproduction amplitudes
for these virtual mesons, are included in the relativistic
IA calculation (not shown in the figures) to all orders.
Second, boost effects, such as those associated with the
Lorentz contraction of the wave function and Wigner
rotation of the nucleons’ spins (Friar, 1975, 1977), are
typically not included in the nonrelativistic calculations.
It has been shown that the tensor polarization can be
expressed in the impulse approximation, and neglecting
small magnetic contributions, as (Forest et al., 1996)


T20~Q !52A2
FC ,M50


2 ~Q !2FC ,M51
2 ~Q !


FC ,M50
2 ~Q !12FC ,M51


2 ~Q !
, (6.42)


where FC ,M(Q) is the Fourier transform of the density
for a deuteron in state M(50,61). Thus the minimum
in T20(Q) is related to the vanishing of the M51 form
factor. The deuteron in an M51 state has the shape of a


FIG. 22. The deuteron tensor polarization T20(Q2), obtained
in the impulse approximation (IA) and with inclusion of two-
body charge and current contributions and relativistic correc-
tions (TOT), compared with data from Schulze et al. (1984;
Bates-84), The et al. (1991; Bates-91) Dmitriev et al. (1985;
Novosibirsk-85), and Gilman et al. (1990; Novosibirsk-90).
Theoretical results corresponding to the Argonne v18 (v18 ;
Wiringa, Stoks, and Schiavilla, 1995), Bonn B (B; Plessas,
Christian, and Wagenbrunn, 1995), Nijmegen (N; Plessas,
Christian, and Wagenbrunn, 1995) interactions are displayed.
Also shown is the relativistically covariant full calculation of
Van Orden, Devine, and Gross (1995). The Höhler parametri-
zation is used for the nucleon electromagnetic form factors.
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dumbbell oriented along the z axis, while in an M50
state it has the shape of a torus lying in the xy plane
(Forest et al., 1996). Naively, one therefore expects that
the Lorentz contraction would affect the M51 more
than the M50 density, and this fact would produce a
shift in the minimum position for T20(Q). However, a
rough estimate indicates that such a shift is of the order
of a couple percent for a deuteron traveling along the z
axis with a velocity Q/4m (in the Breit frame), with Q
.2 fm 21. A more realistic estimate of these boost cor-
rections in a relativistic framework also found them to
be rather small in the momentum-transfer range covered
by experiment (Hummel and Tjon, 1990). Therefore the
substantial differences between the nonrelativistic and
relativistic predictions are more likely due to dynamic
differences. For example, Van Orden, Devine, and
Gross (1995) have shown that the B(Q) structure func-
tion, in particular its zero position, is very sensitive to
the (very) small P-wave components due to NN̄ admix-
tures in the deuteron wave function, which are clearly of
relativistic origin. However, it is also important to point
out that different quasipotential schemes, using similar
one-boson-exchange interaction models, nevertheless
produce significantly different predictions for the deu-
teron observables (Hummel and Tjon, 1989; Van Orden,
Devine, and Gross, 1995). A satisfactory resolution of
these issues is still lacking.


2. The backward electrodisintegration of the deuteron
at threshold


The inclusive electron-scattering cross section is writ-
ten, in the one-photon-exchange approximation, as (de-
Forest and Walecka, 1966)


d2s


dvdV
5sM@vLRL~q ,v!1vTRT~q ,v!# , (6.43)


where the longitudinal and transverse response func-
tions are given by


Ra~q ,v!5
1


2Ji11 (
Mi


(
f


u^fuOa~q!ui ;JiMi&u2


3d~v1Ei2Ef!, (6.44)


where Oa(q) is either the charge operator (a5L), or
the transverse component of the current operator (a
5T). For a transition to a discrete final state uf& of an-
gular momentum Jf the multipole expansion of Oa(q)
leads to Eqs. (6.7) and (6.8).


In the 2H(e ,e8)pn reaction, the final state is in the
continuum, and its wave function is written as


uq;pSMSTMT&5eiq•Rcp,SMSTMT


~2 ! ~r!, (6.45)


where r5r12r2 and R5(r11r2)/2 are the relative and
center-of-mass coordinates. The incoming-wave
scattering-state wave function of the two nucleons hav-
ing relative momentum p and spin-isospin states
SMS ,TMT is approximated as (Renard, Tran Thanh
Van, and Le Bellac, 1965; Fabian and Arenhövel, 1979;
Schiavilla and Riska, 1991)
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cp,SMSTMT
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@eip•r2~21 !S1Te2ip•r#xMS


S xMT
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1
4p
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(
JMJ
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(
LL8


iLdLST@ZLSMS
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3F1
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uL8L
~2 !


~r ;p ,JST !


2dL8LjL~pr !GYL8SJ
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T , (6.46)


where


dLST512~21 !L1S1T, (6.47)


ZLSMS


JMJ ~ p̂!5(
ML


^LML ,SMSuJMJ&YLML
~ p̂!. (6.48)


The dLST factor ensures the antisymmetry of the wave
function, while the Clebsch-Gordan coefficients restrict
the sum over L and L8. The radial functions uL8L


(2) are
obtained by solving the Schrödinger equation in the JST
channel, and they behave asymptotically as


1
r


uL8L
~2 !


~r ;p ,JST ! ;
r→`


1
2


@dL8LhL
~1 !~pr !


1~SL8L
JST


!* hL8
~2 !


~pr !# , (6.49)


where SL8L
JST is the S matrix in the JST channel and the


Hankel functions are defined as hL
(1,2)(x)5jL(x)


6inL(x), j l and nL being the spherical Bessel and Neu-
mann functions, respectively. In the absence of interac-
tion, uL8L


(2) (r ;p ,JST)/r→dL8LjL(pr), and c(2)(r) re-
duces to an antisymmetric plane wave. Interactions
effects are retained in all partial waves with J<Jmax . For
the threshold electrodisintegration it is found that these
interaction effects are negligible for Jmax.2 (Fabian and
Arenhövel, 1979; Schiavilla and Riska, 1991).


The response functions are expressed as


Ra~q ,v!5 (
S ,T50,1


Ra
ST~q ,v!, (6.50)


where the contributions from the individual spin-isospin
states are


Ra
ST~q ,v!5


1
3 (


MJMS
E dp


~2p!3


1
2


uAa
ST~q,p;MJ ,MS!u2


3d~v1md2Aq21mp
2 !, (6.51)


with Aa
ST defined as


Aa
ST~q,p;MJ ,MS!


[^q;p,SMST ,MT50uOa~q!ud ;J51,MJ&. (6.52)


Here mp is the internal energy of the recoiling pair of
nucleons, and the factor 1


2 in Eq. (6.51) is included to
avoid double counting.
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The main component of the cross section for back-
ward electrodisintegration of the deuteron near thresh-
old is the magnetic dipole transition between the bound
deuteron and the T51 1S0 scattering state (Hockert
et al., 1973). At large values of momentum transfer, this
transition rate is dominated by the isovector (model-
independent) p-like and r-like two-body currents
(Buchmann, Leidemann, and Arenhövel, 1985; Schia-
villa and Riska, 1991).


The calculated cross sections for backward electrodis-
integration are compared in Fig. 23 with the experimen-
tal values given in Cox, Wynchank, and Collie (1965),
Bernheim et al. (1981), Auffret et al. (1985b), and Ar-
nold et al. (1990). The data have been averaged over the
intervals 0–3 MeV and 0–10 MeV of the recoiling pn
pair center-of-mass energy for the Saclay @Q<1 GeV/c ,
Bernheim et al. (1981), Auffret et al. (1985b)] and SLAC
@Q.1 GeV/c , Arnold et al. (1990)] kinematic regions,
respectively. The theoretical results have instead been
calculated at center-of-mass energies of 1.5 MeV and 5
MeV for the Saclay and SLAC kinematics, respectively.
However, it has been shown that the effect of the width
of the energy interval above threshold (of the final state)


FIG. 23. The cross sections for backward electrodisintegration
of the deuteron near threshold, obtained in the impulse ap-
proximation (IA) and with inclusion of two-body current con-
tributions and relativistic corrections (TOT), compared with
data from Cox, Wynchank, and Collie (1965; SLAC), Bern-
heim et al. (1981; Saclay-81), Auffret et al. (1985b; Saclay-85),
and Arnold et al. (1990; SLAC). Theoretical results corre-
sponding to the Argonne v18 (v18 ; Schiavilla, 1996b), Paris (P;
Leidemann, Schmitt, and Arenhövel, 1990), and r-space ver-
sion C of the Bonn (QC; Leidemann, Schmitt, and Arenhövel,
1990) interactions are displayed. The dipole parametrization
(including the Galster factor for GE ,n) is used for the nucleon
electromagnetic form factors. In particular, the Sachs form fac-
tor GE


V(Q2) is used in the isovector model-independent two-
body current operators. For the Paris interaction, the results
obtained by using the Dirac form factor F1


V(Q2) in these two-
body currents are also shown [curve labeled TOT(P;F 1


V)].
Data and theory have been averaged between 0 and 3 MeV for
Q2,30 fm 22 and between 0 and 10 MeV for Q2.30 fm 22 pn
relative energy, corresponding to the break in the curves.

Rev. Mod. Phys., Vol. 70, No. 3, July 1998

over which the cross-section values are averaged is small
(Schiavilla and Riska, 1991). In the figure, the results
obtained in the impulse approximation and, in addition,
with inclusion of the two-body current contributions
(Leidemann, Schmitt, and Arenhövel, 1990; Schiavilla,
1996b) are shown separately for the Paris (Cottingham
et al., 1973), Bonn QC (Machleidt, 1989), and Argonne
v18 (Wiringa, Stoks, and Schiavilla, 1995) interactions.
The dipole parametrization is used for the electromag-
netic form factors of the nucleon (including the Galster
factor for the electric form factor of the neutron, Galster
et al., 1971).


While the low-momentum transfer data are in reason-
able agreement with theory, those at high Q (.1
GeV/c) are substantially overestimated by the calcula-
tions based on the Paris (Leidemann, Schmitt, and
Arenhövel, 1990) and Argonne v18 (Schiavilla, 1996b)
models. A number of remarks are in order, however.
First, in the calculations shown in Fig. 23, the isovector
Sachs form factor GE


V(Q2) is used in the expressions for
the leading p-like and r-like two-body currents. In fact,
if F1


V(Q2) were to be used, the data would be substan-
tially overestimated by theory in the Q2 range 5–25
fm22, as is shown for the case of the Paris interaction.


Second, the better overall fit to the data provided by
the Bonn QC interaction is a consequence of the fact
that in the impulse approximation the cancellation be-
tween the S- and D-state contributions to the pn 1S0
transition occurs at a somewhat higher Q value than for
the Paris and Argonne v18 models (Leidemann, Schmitt,
and Arenhövel, 1990). This is presumably due to the
weaker Bonn QC tensor force.


Third, the predicted cross-section values are sensitive
to the parametrization used for the nucleon electromag-
netic form factors, in particular GE


V(Q2). This sensitivity
can be traced back to the unknown behavior of the neu-
tron electric form factor at large Q2. Indeed, as shown in
Fig. 24, the difference between the results obtained with
the dipole and Gari and Krümpelmann (1986) param-
etrizations is as large as that between the present predic-
tions and the data, although use of the Gari and
Krümpelmann form factors would increase the observed
discrepancy by more than a factor of 2. In any case, the
uncertainty in the behavior of the nucleon electromag-
netic form factors (far larger than that in the experimen-
tal data) prevents definitive quantitative predictions be-
ing made at Q.5 fm21.


C. The A53 and 4 systems


1. The magnetic form factors of 3H and 3He


Because of a destructive interference in the matrix
elements for the magnetic dipole transition between the
S- and D-state components of the wave functions, the
impulse approximation predictions for the 3He and 3H
magnetic form factors have distinct minima at around
2.5 fm 21 and 3.5 fm 21, respectively, in disagreement
with the experimental data (Collard et al., 1965; McCar-
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thy, Sick, and Whitney, 1977; Arnold et al., 1978; Szalata
et al., 1977; Cavedon et al., 1982; Dunn et al., 1983;
Juster et al., 1985; Ottermann et al., 1985; Beck et al.,
1987; Amroun et al., 1994). The situation is closely re-
lated to that of the backward cross section for electro-
disintegration of the deuteron, which is in fact domi-
nated by two-body current contributions for values of
momentum transfer above 2.5 fm 21.


The calculated magnetic form factors of 3H and 3He
(Strueve et al., 1987; Schiavilla and Viviani, 1996) are
compared with the experimental data in Figs. 25 and 26.
The ground-state wave functions have been calculated
either with the correlated hyperspherical harmonics
(CHH) method using the AV18/IX model and including
one- and two-D admixtures with the transition-
correlation-operator technique (Schiavilla et al., 1992)
or with the coupled-channel Faddeev method using a
Paris interaction modified to include explicit D-isobar
excitations via p-meson and r-meson exchange (phase-
equivalent to the original Paris model; Hajduk, Sauer,
and Strueve, 1983). The AV18/IX 3He and 3H wave
functions give binding energies and charge radii which
reproduce the experimental values (Viviani, Schiavilla,
and Kievsky, 1996). However, the Paris-based calcula-
tions underbind the trinucleons by about 800 keV
(Hajduk, Sauer, and Strueve, 1983). This underbinding
is a consequence of the partial cancellation between the
attractive contribution from the three-body interaction
mediated by intermediate D isobars, and the repulsive


FIG. 24. The cross sections for backward electrodisintegration
of the deuteron near threshold, obtained with the IJL (Iach-
ello, Jackson, and Lande, 1973), GK (Gari and Krümpelmann,
1986), H (Höhler et al. 1976), D (Galster et al., 1971) param-
etrizations of the nucleon electromagnetic form factors, com-
pared with data from Cox, Wynchank, and Collie (1965;
SLAC), Bernheim et al. (1981; Saclay-81), Auffret et al.
(1985b; Saclay-85), and Arnold et al. (1990; SLAC). All theo-
retical results correspond to the Argonne v14 interaction and
include two-body current contributions and relativistic correc-
tions (Schiavilla and Riska, 1991). The Sachs form factor
GE


V(Q2) is used in the isovector model-independent two-body
current operators. Data and theory have been averaged as in
Fig. 23.
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one due to dispersive effects.
There are also differences in the p-like (and r-like)


two-body currents, which give the dominant contribu-
tion to the A53 magnetic form factor. While these are
constructed from the two-nucleon interaction in the case
of the AV18/IX calculation, they have a form derived
from simple meson-exchange models in the Paris-based


FIG. 25. The magnetic form factors of 3H, obtained in the
impulse approximation (IA) and with inclusion of two-body
current contributions and D admixtures in the bound-state
wave function (TOT), compared with data (shaded area) from
Amroun et al. (1994). Theoretical results correspond to the
Argonne v18 two-nucleon and Urbana IX three-nucleon
(Schiavilla and Viviani, 1996) and Paris two-nucleon (P;
Strueve et al., 1987) interactions. They use, respectively, corre-
lated hyperspherical harmonics and Faddeev wave functions
and employ the dipole parametrization (including the Galster
factor for GE ,n) for the nucleon electromagnetic form factors.
Note that the Sachs form factor GE


V(Q2) is used in the isovec-
tor model-independent two-body current operators for the
Argonne-based calculations, while the Dirac form factor
F1


V(Q2) is used in the Paris-based calculations. Also shown are
the Argonne results [curve labeled TOT(DPT)] obtained by
including the two-body currents associated with intermediate
excitation of a single D isobar in perturbation theory.


FIG. 26. Same as in Fig. 25, but for 3He.
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calculation and are not therefore strictly consistent with
the interaction. In particular, the usual ad hoc treatment
of the short-range part implies that the continuity equa-
tion is satisfied only approximately. Even more impor-
tantly, the Paris-based calculations use, in the leading
isovector currents, the form factor F1


V(Q2) rather than
GE


V(Q2), which substantially increases their contribu-
tion.


In the figures, the curves labeled DPT are obtained by
including the D components perturbatively in the
ground states, as is commonly done in the literature.


While the measured 3H magnetic form factor is in
excellent agreement with theory over a wide range of
momentum transfers, there is a significant discrepancy
between the measured and calculated values of the 3He
magnetic form factor in the region of the diffraction
minimum, particularly for the case of the AV18/IX cal-
culation. This discrepancy persists even when different
parametrizations of the nucleon electromagnetic form
factors are used for the single-nucleon current and the
model-independent two-body currents.


It is useful to define the quantities


FM
S ,V~Q ![


1
2


@m~3He!FM~Q ;3He!


6m~3H!FM~Q ;3H!# . (6.53)


If the 3H and 3He ground states were pure T5 1
2 states,


then the FM
S and FM


V linear combinations of the three-
nucleon magnetic form factor would only be influenced
by, respectively, the isoscalar (S) and isovector (V)
parts of the current operator. However, small isospin
admixtures with T. 1


2 , induced by the electromagnetic
interaction as well as charge-symmetry-breaking and
charge-independence-breaking terms present in the Ar-
gonne v18 interaction, are included in the present wave
functions. As a consequence, isoscalar (isovector) cur-
rent operators give small (otherwise vanishing) contri-
butions to the FM


V (FM
S ) magnetic form factor (Schiavilla


and Viviani, 1996).
It is instructive to consider the contributions of indi-


vidual components of the two-nucleon currents to the
form factors. In the region of the diffraction minimum,
the p-like current gives the dominant isovector contri-
bution to FM


V (Q), while the r-like contributions are sig-
nificantly smaller (by nearly an order of magnitude).
The remaining terms are smaller still; the next most im-
portant isovector contributions are those associated with
D and SO currents (the latter constructed from the spin-
orbit components of the two-nucleon interaction). It is
significant that calculations of perturbative and nonper-
turbative treatment of the D-isobar components in the
wave function give significantly different results. In gen-
eral, perturbation theory leads to a significant overpre-
diction of the importance of D degrees of freedom in
nuclei. This is particularly so in reactions as delicate as
the radiative captures on 2H and 3He at very low energy
(to be discussed below).


Among the two-body contributions to FM
S (Q), the


most important is that due to the currents from the spin-
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orbit interactions, and the next most important is that
from the quadratic spin-orbit interactions. These two
contributions have opposite sign, as has been found for
the deuteron B(Q) structure function (Wiringa, Stoks,
and Schiavilla, 1995).


2. The charge form factors of 3H, 3He, and 4He


In Figs. 27–29, the calculated 3H, 3He, 4He
charge form factors (Strueve et al., 1987; Musolf, Schia-
villa, and Donnelly, 1994; Schiavilla and Viviani, 1996)
are compared with the experimental data (Collard et al.,
1965; Frosch et al., 1968; McCarthy, Sick, and Whitney,
1977; Szalata et al., 1977; Arnold et al., 1978; Cavedon
et al., 1982; Dunn et al., 1983; Juster et al., 1985; Otter-
mann et al., 1985; Beck et al., 1987; Amroun et al., 1994).
The three-body wave functions used in the matrix ele-
ments of the charge operators are those discussed in the
previous subsection. However, the four-nucleon wave
function is that obtained in a variational Monte Carlo
calculation corresponding to the older AV14/VIII
model, which underestimates the 4He binding energy by
3% (Wiringa, 1991).


The calculated charge form factors for the A53 and 4
nuclei are in excellent agreement with the experimental
data. The important role of the two-body charge opera-
tor contributions above .3 fm21 is evident, consistent
with what was found in earlier studies. The structure of
these operators is the same in the AV18/IX and Paris-
based calculations. However, in the former case their


FIG. 27. The charge form factors of 3H, obtained in the im-
pulse approximation (IA) and with inclusion of two-body
charge contributions and relativistic corrections (TOT), com-
pared with data (shaded area) from Amround et al. (1994).
Theoretical results correspond to the Argonne v18 two-nucleon
and Urbana IX three-nucleon (Schiavilla and Viviani, 1996)
and Paris two-nucleon (P; Strueve et al., 1987) interactions.
They use, respectively, correlated hyperspherical harmonics
and Faddeev wave functions and employ the dipole parameter-
ization (including the Galster factor for GE ,n) for the nucleon
electromagnetic form factors. Note that the Paris-based calcu-
lation also includes D-isobar admixtures in the 3H wave func-
tion.
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short-range behavior is determined from the Argonne
v18 according to the Riska prescription (Schiavilla, Pan-
dharipande, and Riska, 1990; Schiavilla and Viviani,
1996), while in the latter case this behavior is taken into
account by phenomenological form factors (Strueve
et al., 1987).


The theoretical uncertainty caused by the lack of pre-
cise knowledge of the nucleon electromagnetic form fac-
tors is significant for 3H only at the highest values of
momentum transfer, as Fig. 30 makes clear. The effect
of this uncertainty is even smaller in 3He.


Again, we can consider contributions of the different
components of the nuclear charge operator to the com-
binations,


FIG. 28. Same as in Fig. 27, but for 3He.


FIG. 29. The charge form factors of 4He, obtained in the im-
pulse approximation (IA) and with inclusion of two-body
charge contributions and relativistic corrections (TOT), com-
pared with data from Frosch et al. (1968) and Arnold et al.
(1978). Theoretical results correspond to the Argonne v14 two-
nucleon and Urbana VIII three-nucleon interactions (AV14-
VIII), using a variational Monte Carlo 4He wave function
(VMC w.f.) and employ the dipole parametrization (including
the Galster factor for GE ,n) for the nucleon electromagnetic
form factors. From Musolf, Schiavilla, and Donnelly (1994).
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FC
S ,V~Q ![ 1


2 @2FC~Q ;3He!6FC~Q ;3H!# . (6.54)


As already mentioned in the previous subsection, the FC
S


(FC
V) charge form factor will also include small contribu-


tions from isovector (isoscalar) operators, proportional
to admixtures in the wave functions with T. 1


2 . The re-
sults reveal that, at low and moderate values of momen-
tum transfer, the p-like charge operator is by far the
most important two-body term. This term is more than a
factor of 10 larger than the next largest contribution, the
r-like term, in FC


S , while it is roughly a factor of 5 larger
in FC


V .
Finally, the question of how the three-body interac-


tion influences the charge form factor has been studied
by Friar, Gibson, and Payne (1987) by calculating the
trinucleon charge form factor from Faddeev wave func-
tions obtained for several different combinations of two-
and three-body interactions. These studies have conclu-
sively shown that the effect of the three-nucleon inter-
action on the charge form factor is small.


D. The A56 systems


In this section we discuss the 6Li ground-state longi-
tudinal and transverse form factors as well as transition
form factors to the excited states with spin, parity and
isospin assignments (Jp;T) given by (3 1;0) and (0 1;1).
The calculations are based on variational Monte Carlo
wave functions obtained from the AV18/IX Hamil-
tonian model (Pudliner et al., 1995; Wiringa, Stoks, and
Schiavilla, 1995). The calculated binding energies for the
ground state and (31;0) and (01;1) low-lying excited


FIG. 30. The 3H charge form factors, calculated with the IJL
(Iachello, Jackson, and Lande, 1973), GK (Gari and Krümpel-
mann, 1986), H (Höhler et al., 1976), and D (Galster et al.,
1971) parametrizations of the nucleon electromagnetic form
factors, compared with data (shaded area) from Amroun et al.
(1994). All theoretical results correspond to the Argonne v18
two-nucleon and Urbana IX three-nucleon interactions
(AV18-IX), using a correlated hyperspherical harmonics 3H
wave function (CHH w.f.) and include two-body current con-
tributions and relativistic corrections. From Schiavilla and
Viviani (1996).
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states are given in Table VII (Sec. IV.B). The ground
state is underbound by nearly 4 MeV compared to ex-
periment, and is only 0.4 MeV more bound than the
corresponding 4He calculation (27.8 MeV). This is
above the threshold for breakup of 6Li into an a and
deuteron. In principle, it should be possible to lower the
variational energy at least to that threshold, but the
wave function would be too spread out. In the varia-
tional calculations reported by Wiringa and Schiavilla
(1996), the parameter search was constrained to keep
the rms radius close to the experimental value of 2.43
fm21. The (exact) Green’s-function Monte Carlo results
for this Hamiltonian, also listed in Tables VII and VIII,
indicate that the ground-state binding energy and radius
are in agreement with the experimental value, while the
(31;0) and (01;1) experimental binding energies are
underestimated by about 3%.


It should be emphasized that previous calculations of
the elastic and inelastic six-body form factors have relied
on relatively simple shell-model (Donnelly and Wa-
lecka, 1973; Vergados, 1974; Bergstrom, 1975) or a-d
(Bergstrom, 1979) cluster wave functions. These calcula-
tions have typically failed to provide a satisfactory,
quantitative description of all measured form factors.
More phenomenologically successful models have been
based on aNN (Kukulin et al., 1990, 1995; Lehman and
Parke 1983a, 1983b) clusterization, or on extensions of
the basic a-d model with spherical clusters, in which the
deuteron is allowed to deform, or stretch, along a line
connecting the clusters’ centers of mass (Bergstrom,
Kowalski, and Neuhausen, 1982). However, while these
models do provide useful insights into the structure of
the A56 nuclei, their connection with the underlying
two- (and three-) nucleon dynamics is rather tenuous.


The calculated elastic form factors FL
2 (Q) and FT


2 (Q)
(Wiringa and Schiavilla, 1996) are compared with the
experimental values (Li et al., 1971; Lapikas, 1978; Berg-
strom, Kowalski, and Neuhausen, 1982) in Figs. 31 and
32. Since the 6Li ground state is (11;0), both J50 and
J52 Coulomb multipoles contribute to FL


2 , while only
the J51 magnetic multipole operator contributes to FT


2 .
In these figures, the results obtained in both the impulse
approximation (empty squares) and with inclusion of
two-body corrections in the charge and current opera-
tors (filled squares) are displayed, along with the statis-
tical errors associated with the Monte Carlo integra-
tions. The FL


2 form factor is in excellent agreement with
experiment. In particular, the two-body contributions
(predominant due to the p-like charge operator) shift
the minimum to lower values of momentum transfer Q ,
consistently with what has been found for the charge
form factors of the hydrogen and helium isotopes. The
T2


Coul multipole contribution is much smaller than the
T0


Coul one, and at low Q it is proportional to the ground-
state quadrupole moment. The theoretical prediction for
the latter is significantly larger (though with a 50% sta-
tistical error) in absolute value than the measured value,
but it does have the correct (negative) sign. It is inter-
esting to point out that cluster models of the 6Li ground
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state give large, positive values for the quadrupole mo-
ment, presumably due to the lack of D waves in the a
particle and the consequent absence of destructive inter-
ference between these and the D wave in the a-d rela-
tive motion.


The experimental transverse form factor is not well
reproduced by theory for Q values larger than 1 fm21.


FIG. 31. The longitudinal form factors of 6Li, obtained in the
impulse approximation (IA) and with inclusion of two-body
charge operator contributions and relativistic corrections
(TOT), compared with data from Li et al. (1971; Stanford).
The theoretical results correspond to the Argonne v18 and Ur-
bana IX three-nucleon interactions, use a variational Monte
Carlo 6Li wave function, and employ the dipole parameteriza-
tion (including the Galster factor for GE ,n) of the nucleon
electromagnetic form factors. From Wiringa and Schiavilla
(1996).


FIG. 32. The transverse form factors of 6Li, obtained in the
impulse approximation (IA) and with inclusion of two-body
current contributions (TOT), compared with data from Rand,
Frosch, and Yearian (1966); Stanford Lapikás (1978; Amster-
dam), and Bergstrom, Kowalski, and Neuhausen (1982; Bates).
The theoretical results correspond to the Argonne v18 and Ur-
bana IX three-nucleon interactions, use a variational Monte
Carlo 6Li wave function, and employ the dipole parametriza-
tion (including the Galster factor for GE ,n) of the nucleon
electromagnetic form factors. From Wiringa and Schiavilla
(1996).
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Since the 6Li ground state has T50, only isoscalar two-
body currents contribute to FT


2 (Q). The associated con-
tributions are small at low Q , but increase with Q , be-
coming significant for Q.3 fm21. However, the data
cover the Q range 0–2.8 fm 21. The observed discrep-
ancy between theory and experiment might be due to
deficiencies in the VMC wave function. Indeed, it will be
interesting to see whether this discrepancy is resolved by
using the more accurate GFMC wave functions. We also
note that the calculated magnetic moment is about 4%
larger than the experimental value, which is close to that
of a free deuteron (see Table XI).


The measured longitudinal inelastic form factor to the
(3 1;0) state (Eigenbrod, 1969; Bergstrom and Tomu-
siak, 1976; Bergstrom, Deutschmann, and Neuhausen,
1979) is found to be in excellent agreement with the
VMC predictions (Wiringa and Schiavilla, 1996), as can
be seen in Fig. 33. We note that this transition is induced
by J52 and J54 Coulomb multipole operators, and thus
the associated form factor FL


2 (Q) behaves as Q4 at low
Q . Good agreement between the experimental (Berg-
strom, 1975; Bergstrom, Deutschmann, and Neuhausen,
1979) and VMC calculated values (Wiringa and Schia-
villa, 1996) is also found for the transverse inelastic form
factor to the state (0 1;1) (see Fig. 34). The latter is an
isovector magnetic dipole transition and, as expected, is
significantly influenced, even at low values of Q , by two-
body contributions, predominantly by those due to the
p-like current operator. This is particularly evident
when considering the radiative widths of the (0 1;1) and
(3 1;0) states. This latter quantity is generally given by
(Ring and Schuck, 1980)


G fi~l ,J !5
8p~J11 !


J@~2J11 !!!#2
Eg


2J11B~lJ ,Ji→Jf!, (6.55)


B~EJ ,Ji→Jf!5
1


4p


2J11
2Ji11


u^JfuuQJuuJi&u2, (6.56)


B~MJ ,Ji→Jf!5
1


4p


2J11
2Ji11


u^JfuumJuuJi&u2, (6.57)


where Eg is the energy of the emitted photon, and QJM
and mJM are the operators defined in Eqs. (6.18)–(6.20),
respectively. Note that the B(EJ) and B(MJ) are, re-


TABLE XI. Magnetic moments in n.m., obtained with the Ar-
gonne v18 two-nucleon and Urbana IX three-nucleon interac-
tion Hamiltonian model in the impulse approximation (IA)
and with inclusion of two-body current contributions (TOT).
For the trinucleons, D-isobar degrees of freedom are included
nonperturbatively with the transition-correlation-operator
method.


2H 3H 3He 6Li


IA 0.847 2.571 21.757 0.83
TOT 0.871 2.980 22.094 0.86
Expt. 0.857 2.979 22.127 0.822
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spectively, in units of e2-fm2J and mN
2 -fm2J22, and that,


for electric multipole transitions, use of the identity in
Eq. (6.21) (Siegert’s theorem) has been made, which is
valid only if the initial and final states are truly eigen-


FIG. 33. The longitudinal form factors for the transition from
the 1 1,T50 to the 3 1,T50 (2.18 MeV) levels of 6Li, obtained
in the impulse approximation (IA) and with inclusion of two-
body charge operator contributions and relativistic corrections
(TOT), compared with data from Bergstrom (1979). The the-
oretical results correspond to the Argonne v18 and Urbana IX
three-nucleon interactions, use variational Monte Carlo
11,T50 and 3 1,T50 6Li wave functions, and employ the di-
pole parametrization (including the Galster factor for GE ,n) of
the nucleon electromagnetic form factors. From Wiringa and
Schiavilla (1996).


FIG. 34. The transverse form factors for the transition from
the 1 1,T50 to the 0 1,T51 (3.56 MeV) levels of 6Li, obtained
in impulse approximation (IA) and with inclusion of two-body
current contributions (TOT), compared with data from Berg-
strom, Deutschmann, and Neuhausen (1979; Saskatoon,
Mainz). The theoretical results correspond to the Argonne v18
and Urbana IX three-nucleon interactions, use variational
Monte Carlo 1 1,T50 and 0 1,T51 6Li wave functions, and
employ the dipole parametrization (including the Galster fac-
tor for GE ,n) of the nucleon electromagnetic form factors.
From Wiringa and Schiavilla (1996).
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states of the Hamiltonian. Such is not the case for the
VMC wave functions used here. The predicted radiative
widths of the (0 1;1) and (3 1;0) states are, respectively,
7.5 eV and 3.431024 eV in the impulse approximation,
and 9.1 eV and 3.431024 eV including two-body contri-
butions (Wiringa and Schiavilla, 1996). These results
should be compared with the corresponding experimen-
tal values (8.1960.17) eV and (4.4060.34)1024 eV.
Thus the isovector two-body current contributions in-
crease the g width of the (01;1) state by 20%, bringing
it into reasonable agreement with experiment.


E. Some concluding remarks


In this section the electromagnetic structure of the A
52 –6 nuclei has been discussed within a realistic ap-
proach to nuclear dynamics, based on nucleons interact-
ing via two- and three-body potentials and consistent
two-body currents. The only phenomenological input,
beyond that provided by the underlying interactions,
consists of the electromagnetic form factors of the
nucleon, which are taken from experiment. Within this
framework, a variety of electronuclear observables, in-
cluding ground-state moments (listed in Table XI), as
well as elastic and inelastic form factors, are reasonably
well described by theory at a quantitative level. The only
remaining discrepancies are those between the mea-
sured and calculated deuteron tensor polarizations at in-
termediate values of momentum transfers (Q.3.5–4.5
fm21), and between the experimental and calculated po-
sitions of the first zero in the 3He magnetic form factor.
However, additional data are needed to confirm these
discrepancies with theory. It should also be pointed out
that simultaneously reproducing the observed deuteron
A(Q), B(Q), and T20(Q) has proven, to date, difficult
not only in the essentially nonrelativistic approach dis-
cussed above (Schiavilla and Riska, 1991; Plessas, Chris-
tian, and Wagenbrunn, 1995), but also in fully relativistic
approaches based on quasipotential reductions of the
Bethe-Salpeter equation (Hummel and Tjon, 1989; Van
Orden, Devine, and Gross, 1995), and on light-front
Hamiltonian dynamics (Chung et al., 1988).


The special role played by the two-body charge and
current operators associated with p exchange should be
emphasized. Their contributions dominate both isosca-
lar and isovector charge form factors of the A52 –4 nu-
clei, as well as their isovector magnetic structure at in-
termediate values of momentum transfers Q.3.5–4.5
fm21. In fact, a description in which the degrees of free-
dom associated with virtual-pion production were to be
ignored would dramatically fail to reproduce the experi-
mental data. That only the p-exchange currents re-
quired by gauge invariance (and chiral symmetry)
should have (so far) clear experimental evidence is per-
haps not surprising. This fact has been referred to in the
past as the ‘‘chiral filter’’ paradigm (Rho and Brown,
1981).


Finally, the remarkable success of the present picture
based on (essentially) nonrelativistic dynamics, even at
large values of momentum transfer, should be stressed.
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It suggests, in particular, that the present model for the
two-body charge operators is better than one a priori
should expect. These operators, such as the p-exchange
charge operator, fall into the class of relativistic correc-
tions. Thus evaluating their matrix elements with the
usual nonrelativistic wave functions represents only the
first approximation to a systematic reduction. A consis-
tent treatment of these relativistic effects would require,
for example, inclusion of the boost corrections on the
nuclear wave functions (Friar, 1977). Yet, the excellent
agreement between the calculated and measured charge
form factors of the A53 –6 nuclei suggests that these
corrections may be negligible in the Q range explored so
far.


VII. CORRELATIONS IN NUCLEI


The two outstanding features of the nucleon-nucleon
(NN) interaction v ij are its short-range repulsion and
long-range tensor character. These induce, among the
nucleons in a nucleus, strong spatial spin-isospin corre-
lations, which influence the structure of the ground- and
excited-state wave functions. Several nuclear properties
reflect these features of the underlying v ij . For example,
the two-nucleon density distributions in states with pair
spin S51 and isospin T50 are very small at small inter-
nucleon separations and exhibit strong anisotropies de-
pending on the spin projection Sz (Forest et al., 1996).
Nucleon momentum distributions N(p) (Zabolitzky and
Ey, 1978; Ciofi degli Atti, Pace, and Salmè, 1984; Fan-
toni and Pandharipande, 1984; Schiavilla, Pandhari-
pande, and Wiringa, 1986; Pieper, Wiringa, and Pan-
dharipande, 1992) and, more generally, spectral
functions S(p,E) (Meier-Hajduk et al., 1983; Ramos,
Polls, and Dickhoff, 1989; Benhar, Fabrocini, and Fan-
toni, 1989, 1991; Morita and Suzuki, 1991) have high-
momentum components and, for S(p,E), energy com-
ponents extending over a wide range of p and E values,
which are produced by short-range and tensor correla-
tions. Finally, these correlations also affect the distribu-
tion of strength in response functions R(q,v), which
characterize the response of the nucleus to a spin-isospin
disturbance injecting momentum q and energy v into
the system (Czyz and Gottfried, 1963; Fabrocini and
Fantoni, 1989).


The present section is organized as follows: We first
review, in Secs. VII.A and VII.B, how the short-range
repulsive and tensor components of the NN interaction
produce strong spatial anisotropies in the two-nucleon
distribution functions, and their dependence on the pair
spin-isospin states. The experimental evidence for these
short-range structures is discussed for the deuteron in
Sec. VII.C and for nuclei with A.2 in Sec. VII.D. The
longitudinal data from (e ,e8) inclusive scattering off nu-
clei have provided, at least in light nuclei, a rather clear
indication for the presence of proton-proton correla-
tions from Coulomb sum studies, as summarized in Sec.
VII.E. Finally, the last two subsections, F and G, present
the current status of momentum-distribution and
spectral-function calculations in nuclei. These quantities,
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by their very definition, are eminently sensitive to corre-
lation effects and are in principle experimentally acces-
sible via (e ,e8p) scattering from nuclei.


A. T,S50,1 two-nucleon density distributions in nuclei


The two-nucleon density distributions in T , SMS two-
nucleon states are defined as (Forest et al., 1996)


rT ,S
MS ~r!5


1
2J11 (


MJ52J


J


^JMJu(
i,j


Pij~r,T ,S ,MS!uJMJ&,


(7.1)


where uJMJ& denotes the ground state of the nucleus
with total angular momentum J and projection MJ , and


Pij~r,T ,S ,MS!5d~r2rij!Pij
TuSMS ;ij&^SMS ;iju,


(7.2)


Pij
T505~12ti•tj!/4, (7.3)


Pij
T515~31ti•tj!/4, (7.4)


projects out the specific two-nucleon state, with rij[ri


2rj5r. The rT ,S
MS is normalized such that


(
T ,S ,MS


E drrT ,S
MS ~r!5


1
2


A~A21 !, (7.5)


i.e., the number of pairs in the nucleus. It is a function of
r , u , independent of the azimuthal angle f . In fact, be-
cause of the average over the total angular momentum
projections of the nucleus, these two-nucleon densities
can simply be expanded as


rT ,S
MS ~r!5 (


L50,2
AT ,S ,L


MS ~r !PL~cosu!, (7.6)


where the functions AT ,S ,L
MS (r), which are explicitly given


by


AT ,S ,L
MS ~r !5


1
2J11


2L11
4p (


MJ
E dRCMJ


† ~R!(
i,j


1


rij
2


3d~r2rij!PL~ r̂ij• ẑ!Pij~T ,S ,MS!CMJ
~R!,


(7.7)


vanish for L.2, and


AT ,S51,L50
MS50


5AT ,S51,L50
MS561 , (7.8)


AT ,S51,L52
MS50


522AT ,S51,L52
MS561 . (7.9)


Note that in Eq. (7.7) R represents the coordinates
r1 , . . . ,rA , and Pij(T ,S ,MS) is the spin-isospin part of
the projection operator introduced in Eq. (7.2).


The two-nucleon densities defined above obviously
will reflect features of the underlying NN interaction. Of
particular relevance are those in the T ,S50,1 channel.
The momentum-independent part of the NN interaction
in this channel, which is dominated by pion exchange, is
given by


v0,1
stat5v0,1


c ~r !1v0,1
t ~r !Sij . (7.10)
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The tensor operator Sij leads to a strong dependence of
the v0,1


stat expectation values upon the relative spatial-spin
configurations of the two nucleons:


^MS50uv0,1
stat~r!uMS50&5v0,1


c ~r !24v0,1
t ~r !P2~cosu!,


(7.11)


^MS561uv0,1
stat~r!uMS561&


5v0,1
c ~r !12v0,1


t ~r !P2~cosu!, (7.12)


where the angle u is relative to the spin-quantization
axis—i.e., the z axis. These expectation values are
shown in Fig. 35 for the combinations MS50 and u50
(particles along the z axis) or p/2 (particles in the xy
plane), and MS561 and u5p/2 (Forest et al., 1996).
Note that by symmetry the expectation value in the state
MS561 and u50 is the same as that in the state MS50
and u5p/2. From Fig. 35 it can be seen that the inter-
action is very repulsive for r,0.5 fm regardless of the
MS value. However, for distances .1 fm, it is very at-
tractive when the two nucleons, in state MS50, are con-
fined in the xy plane and very repulsive when they are
along the z axis. In contrast, when the two nucleons are
in state MS51, the interaction is repulsive (but not as
repulsive as for MS50) when the two nucleons are in
the xy plane and very attractive when they are located
along the z axis. The energy difference between the two
configurations MS50 and u50 and p/2 is found to be
very large—a few hundreds of MeV—in all realistic NN
interactions. As a result, two-nucleon densities in nuclei
are strongly anisotropic.


The deuteron is a particularly simple case, since for it
the two-nucleon density r0,1


M (r;d) is simply related to the
one-nucleon density


r0,1
M ~r;d !5


1
3


3
1
16


rd
M~r85r/2!, (7.13)


FIG. 35. The upper four lines show expectation values of v0,1
stat


for MS50, u50, and the lower four lines are for MS50, u
5p/2 or equivalently MS561, u50. The expectation values
for MS561, u5p/2 (not shown) are half way in between.
Reid model, Reid (1968); Paris model, Cottingham et al.
(1973); Urbana model, Lagaris and Pandharipande (1981);
AV18 model, Wiringa, Stoks, and Schiavilla (1995).
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with the normalization


E d3r8rd
Md~r8!52. (7.14)


This is because the relative distance between the two
nucleons is twice the distance between each nucleon and
the center of mass. Obviously, this property is only valid
for a two-body system. Note that the spin-dependent
two-body density on the left (MS5M) is an average
over projections Md in the deuteron, while the polarized
one-body density on the right (Md5M) has been
summed over spins.


The deuteron densities rd
Md(r8) are displayed in Fig.


36 for a variety of NN interactions (and corresponding
deuteron wave functions) and the spin-spatial configura-
tions discussed above (Forest et al., 1996). They are es-
sentially model independent and show that the ratio
rd


0(r8,u50)/rd
0(r8,u5p/2) is very small, indicating that


the deuteron has near maximal tensor correlations for
distances less than 2 fm.


The deuteron density distributions in Md50 and
Md51 are plotted in Figs. 37 and 38, along with their
contour projections on the xy plane (Forest et al., 1996).
The maximum value of rd is large (0.35 fm23). The
maxima of rd


0 form a ring with a diameter of about 1 fm,
denoted by d , in the xy plane, while the rd


61 has two
equal maxima on the z axis separated by a distance d .
Equidensity surfaces rd


Md(r8)5rd are obtained by rotat-
ing the distributions shown in Figs. 37 and 38 about the
z axis and are shown in Fig. 39 for rd50.24 and 0.08
fm23 (Forest et al., 1996); all four sections are drawn to
the same scale. The peculiar toroidal and dumbbell-like
shapes result from the combined action of the repulsive
core and tensor components of v0,1(r). In fact, the tor-


FIG. 36. Deuteron density rd
Md for the indicated values of Md


and u , obtained from various interaction models (Forest et al.,
1996). Note that in the deuteron the two-nucleon density
rT50,S51


MS (r)5(1/48)rd
Md5MS(r85r/2). Reid model, Reid


(1968); Paris model, Cottingham et al. (1973); Urbana model,
Lagaris and Panharipande (1981); AV18 model, Wiringa,
Stoks, and Schiavilla (1995).
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oidal shape is more compact, in the sense that it persists
down to smaller values of rd or, equivalently, to larger
values of r . Note that, at very small densities (less than
0.05 fm23), the rd


0(r8) and rd
61(r8) surfaces collapse into


disconnected inner and outer parts which, particularly
for Md50, are not close to being spherical in shape. Of
course, in the absence of the tensor interaction, the deu-
teron D state would vanish and the equidensity surfaces
would consist of concentric spheres for any value of the
density.


The r0,1
MS in 3,4He, 6,7Li, and 16O have been recently


calculated (Forest et al., 1996) using VMC wave func-
tions, obtained from a realistic Hamiltonian with the Ar-
gonne v18 two-nucleon (Wiringa, Stoks, and Schiavilla,
1995) and Urbana IX three-nucleon (Pudliner et al.,
1995) interactions. The more accurate Faddeev and cor-
related hyperspherical harmonics wave functions for A
53 and GFMC wave functions for A.3 are not ex-
pected to produce r0,1


MS significantly different from VMC.


FIG. 37. Deuteron density rd
Md561(x8,z8) obtained from the


Argonne v18 interaction. The peaks are located at x850 and
z856d/2 (Forest et al., 1996). Note that in the deuteron the
two-nucleon density rT50,S51


MS561 (r)5(1/48)rd
Md561(r85r/2).


FIG. 38. Deuteron density rd
Md50(x8,z8) obtained from the


Argonne v18 interaction. The peaks are located at z850 and
x856d/2 (Forest et al., 1996). Note that in the deuteron the
two-nucleon density rT50,S51


MS50 (r)5(1/48)rd
Md50(r85r/2).
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The calculated r0,1
MS(A) have been found to have essen-


tially the same shape as the r0,1
MS(d) for internucleon


separations less than 2 fm. This can be seen in Fig. 40,
where the r0,1


MS(r;A) densities, divided by the factor
RAd ,


RAd5
max@r0,1


61~r;A !#


max@r0,1
61~r;d !#


, (7.15)


are compared with the r0,1
MS(r;d). Again, the smallness of


the ratio r0,1
0 (r ,u50)/r0,1


0 (r ,u5p/2) indicates that ten-


FIG. 39. The surfaces having rd
Md561(r8)50.24 fm 23 (A) and


rd
Md50(r8)50.24 fm 23 (B). The surfaces are symmetric about


the z8 axis and have r8<0.74 fm; i.e., the length of the dumb-
bell along the z8 axis as well as the diameter of the outer
surface of the torus is 1.48 fm. Sections C and D are for
rd


Md561,0(r8)50.08 fm 23; the maximum value of r8 is 1.2 fm
(Forest et al., 1996). Note that in the deuteron the two-nucleon
density rT50,S51


MS (r)5(1/48)rd
Md5MS(r85r/2).


FIG. 40. rT50,S51
MS (r ,u)/RAd for various nuclei. From Forest


et al. (1996).
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sor correlations have near maximal strength in all the
nuclei considered. In 16O, the r0,1


MS become approxi-
mately independent of MS only for r*3 fm.


That the neutron-proton relative wave function in a
nucleus is similar, at small separations, to that in the
deuteron had been conjectured by Levinger and Bethe
(1950). Thus Fig. 40 provides a microscopic justification
for that conjecture, which has become known since then
as the quasideuteron model. As a consequence of this
proportionality between the r0,1


MS(r;A) and r0,1
MS(r;d), the


expectation value of any short-ranged T ,S50,1 operator
is expected to scale, in an A-nucleon system, with RAd .
This is illustrated in Table XII, where the values for RAd
are listed along with the ratios of the calculated expec-
tation values of the one-pion-exchange part of the Ar-
gonne v18 potential, the observed low-energy pion-
absorption cross sections [118 MeV for 3He (Alteholz
et al., 1994) and 4He (Mateos, 1995), and 115 MeV for
16O (Mack et al., 1992)], and the average value of the
observed photon-absorption cross sections in the range
Eg580–120 MeV.9 All these processes are dominated
by the T ,S50,1 pairs. However, while these ratios do
suggest the validity of the quasideuteron approximation,
their semiquantitative character should not be ignored.
For example, the ^vp& in nuclei has a relatively small
contribution from T ,SÞ0,1 states, absent in the deu-
teron, which makes ^vp&A /^vp&d slightly larger than
RAd . The pion- and photon-absorption processes in a
nucleus are significantly more complicated than the
quasideuteron model would suggest, despite the overall
agreement between the measured cross-section ratios
and the predicted RAd . In particular, initial- and final-
state interaction effects as well as three-body and, more


9Data for 3He were from Fetisov, Gorbunov, and Varfolom-
eev (1965) and O’Fallon, Koester, and Smith (1972). Data for
4He were from Arkatov et al. (1980); for 7Li and 16O from
Ahrens (1985) and Jenkins, Debevec, and Harty (1994).


TABLE XII. The calculated values of RAd and other ratios in
various nuclei. IP5independent-particle model.


Nucleus RAd
^vp&A


^vp&d


sab ,A
p


sab ,d
p


sab ,A
g


sab ,d
g N0,1


A


IP Cv


3He 2.0 2.1 2.4(1)a ;2d 1.5 1.49
4He 4.7 5.1 4.3(6)b ;4e 3 2.99
6Li 6.3 6.3 5.5 5.46
7Li 7.2 7.8 6.5(5)f 6.75 6.73
16O 18.8 22 17(3)c 16(3)f 30 30.1


aAlteholz et al., 1994.
bMateos, 1995.
cMack et al., 1992.
dFetisov, Gorbunov, and Varfolomeev, 1965; O’Fallon,
Koester, and Smith, 1972.
eArkatov et al., 1980.
fAhrens 1985; Jenkins, Debevec, and Harty, 1994.
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generally, many-body mechanisms—all of which are ne-
glected in the quasideuteron approximation—are known
to influence the measured absorption cross sections in
an A-nucleon system at a quantitative level (Weyer,
1990).


B. T,S5” 0,1 two-nucleon density distributions in nuclei


It is interesting to study the two-nucleon density dis-
tributions in states with pair spin-isospin TS511, 00,
and 10 (Forest et al., 1996). They are shown for 4He,
6Li, and 16O in Figs. 41–43, where all curves have been
normalized to have the same peak height as for 16O.


The T ,S51,1 interaction has a tensor component of
opposite sign with respect to that of the T ,S50,1 inter-
action. As a consequence, the MS561 (50) density dis-
tributions are largest when the two nucleons are in the
xy plane (along the z axis)—that is, the situation is the
reverse of that illustrated in Fig. 40 for T ,S50,1. How-
ever, Fig. 41 shows that the T ,S51,1 densities are
strongly A dependent; in particular, their anisotropy de-
creases as the number of nucleons increases.


This strong A dependence is also a feature of the
T ,S50,0 two-nucleon densities, as can be seen in Fig. 42.
In contrast, the T ,S51,0 density distributions, shown in
Fig. 43, do display, for separation distances less than 2
fm, very similar shapes. This is not surprising, since the
T ,S51,0 interaction is attractive enough to produce a
virtual bound state, which manifests itself as a pole on
the second energy sheet of the 1S0-channel T-matrix.


It is also interesting to compare the total number of
pairs in T ,S states predicted by the present fully corre-
lated wave functions with those obtained from simple
independent-particle wave functions (Forest et al.,
1996). The total numbers of T ,S pairs, defined as


NT ,S
A 5(


MS


2pE rT ,S
MS ~r ,u ;A !r2dr dcosu , (7.16)


FIG. 41. r1,1
MS(r ,u)/R1,1


A for various nuclei (Forest et al., 1996).
The upper three curves are for MS50, u50 while the lower
ones are for MS50, u5p/2 and equivalently MS561, u50.
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are listed in Table XIII. Note that since both the corre-
lated and independent-particle wave functions are
eigenstates of total isospin TA , the following relations
have to be satisfied:


N0,0
A 1N0,1


A 5
1
8


@A212A24TA~TA11 !# , (7.17)


N1,0
A 1N1,1


A 5
1
8


@3A226A14TA~TA11 !# . (7.18)


However, if the total spin


SA5(
i


1
2


si (7.19)


were to commute with the Hamiltonian, there would be
similar relations,


N0,0
A 1N1,0


A 5
1
8


@A212A24SA~SA11 !# , (7.20)


N0,1
A 1N1,1


A 5
1
8


@3A226A14SA~SA11 !# , (7.21)


FIG. 42. r0,0
0 (r)/R0,0


A for various nuclei. From Forest et al.
(1996).


FIG. 43. r1,0
0 (r)/R1,0


A for various nuclei. From Forest et al.
(1996).
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TABLE XIII. The calculated values of RT ,S
A and NT ,S


A in various nuclei. IP5independent particle model.


Nucleus R1,0
A N1,0


A R0,0
A N0,0


A R1,1
A N1,1


A


IP Cv IP Cv IP Cv


3He 0.087 1.5 1.35 0.0016 0 0.01 0.012 0 0.14
4He 0.22 3 2.5 0.0085 0 0.01 0.060 0 0.47
6Li 0.24 4.5 4.0 0.061 0.5 0.52 0.104 4.5 4.96
7Li 0.37 6.75 6.1 0.118 0.75 0.77 0.18 6.75 7.41
16O 1 30 28.5 1 6 6.05 1 54 55.5

for the total number of pairs with spin 0 and 1. This is
the case for the independent-particle wave functions,
which are indeed eigenstates of SA (the independent-
particle 2H, 3He, 4He, 6Li, 7Li, and 16O wave functions
have, respectively, SA51, 1


2 , 0, 1, 1
2 , and 0). However,


tensor correlations in the realistic wave functions pro-
duce admixtures of states with larger SA . These corre-
lations reduce the N1,0


A and increase the N1,1
A by the same


amount since their sum must be conserved. In fact, this
conversion of T51 pairs from spin 0 to spin 1 leads to a
reduction in the binding energy of nuclei (Forest et al.,
1996), since the T ,S51,0 interaction is far more attrac-
tive than the T ,S51,1 interaction. As an example, in
4He the T ,S51,0 interaction gives 214.2 MeV per pair,
while the T ,S51,1 interaction gives only 20.8 MeV per
pair. Thus the conversion of 0.47 T51 pairs from the
S50 to the S51 state raises the energy of 4He by ;6.3
MeV. The mechanism discussed here—it is important to
realize—is an intrinsically many-body effect. Indeed, a
tensor correlation between nucleons i and j will not
change the total spin S of this pair; however, by flipping
the individual spins of i and j , it can convert pairs ik
and/or jl from S50 to S51.


C. Experimental evidence for the short-range structure
in the deuteron


The best experimental evidence, so far, for the pres-
ence of torus- and dumbbell-like short-range structures
in the ground state of nuclei comes from deuteron elas-
tic form-factor measurements.


The measured charge and quadrupole form factors of
the deuteron (Arnold et al., 1975; Simon, Schmitt, and
Walther, 1981; Schulze et al., 1984; Cramer et al., 1985;
Dmitriev et al., 1985; Gilman et al., 1990; Platchkov
et al., 1990; The et al., 1991) are related, in the impulse
approximation, to the Fourier transforms of the one-
body densities (Forest et al., 1996)


FC ,Md
~q !5


1
2E rd


Md~r8!eiqz8d3r8. (7.22)


In a naive model, in which the Md51(21) density is
represented by the sum of two d functions at z856d/2,
the zeros of FC ,Md51(q) would occur at qd
5p ,3p , . . . . The cancellation between the contribu-
tions from the two peaks persists even when these have
a finite width. Thus experimentally locating the position
of the zeros provides an approximate determination of
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the distance between the maxima of rd
Md561 . This dis-


tance coincides with the diameter of the ring of maxi-
mum density of rd


Md50 . Similarly, the zeros of
FC ,Md50(q) provide an estimate for the thickness t of
the torus (at half maximum density, t is predicted to be
about 0.9 fm by realistic NN interactions). This is most
easily seen by considering the Fourier transform of a
disk of thickness t located in a plane perpendicular to
the momentum transfer q.


If a small magnetic contribution to the deuteron ten-
sor polarization is neglected, then this observable can be
simply expressed as (Forest et al., 1996)


T20~q !.2A2
FC ,0


2 ~q !2FC ,1
2 ~q !


FC ,0
2 ~q !12FC ,1


2 ~q !
. (7.23)


The minima of T20(q) occur when FC ,Md51(q) vanshes,
while the maxima occur when FC ,Md50(q) vanishes.
These minima and maxima correspond to those q values
for which the recoiling deuteron is in state Md50 or
Md561, respectively. The first minimum has been mea-
sured to be at q.3.5 fm21 (Dmitriev et al., 1985; Gilman
et al., 1990; The et al., 1991), in agreement with the value
d.1 fm predicted by realistic potentials. The first maxi-
mum of T20 is yet to be observed: it will provide a mea-
sure of the torus thickness. Of course, relativistic correc-
tions and contributions from two-body charge operators
will modify, at the 10% level for moderate q values (less
than 5 fm21), the analysis outlined here. Nevertheless,
the short-range structures present in the deuteron domi-
nate the q behavior of T20 .


The analysis described above can be extended to the
deuteron magnetic form factor. This observable is the
Fourier transform of a transition density, since the pho-
ton changes the spin projection of the deuteron along q
by 61. This transition density is in fact dominated by
the toroidal structure. In particular, as shown in Forest
et al. (1996), the zero of the B-structure function, which
experimentally occurs at about q57 fm21, provides an
estimate for the thickness of the torus: t.0.85 fm.


Because of these short-range structures, the nucleon
momentum distribution in the deuteron depends
strongly on the Md state. It may be experimentally ac-
cessible from cross-section asymmetry measurements in
double-coincidence experiments of the type dW (e ,e8p)n
(Forest et al., 1996) and d(e ,e8pW )nW (Schiavilla, 1997).
However, experiments of this type have not yet been
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TABLE XIV. The asymptotic D/S state ratios and D2 coefficients in fm 2 for the dp , dd , and ad
breakup channels of 3He, 4He, and 6Li, respectively. The 3He-dp result for h is from a Faddeev
calculation (Friar et al., 1988), while all other results are from variational Monte Carlo calculations
(Forest et al., 1996).


h D2 (fm 2)
Theory Experiment Theory Experiment


3He-dp 20.043 20.04260.007a 20.15 20.2060.04a


4He-dd 20.091 20.12 20.360.1b


6Li-ad 20.29 20.07


aSen and Knutson, 1982; Eiró and Santos, 1990.
bKarp et al., 1984.

performed. It is important to stress the complementarity
of these exclusive experiments to the elastic form-factor
measurements. The former should allow us to ascertain
to what extent these peculiar short-range structures are
really due to nucleonic degrees of freedom, as has been
implicitly assumed in the analysis presented here.


D. Short-range structure in A.2 nuclei


In addition to two-nucleon densities, short-range and
tensor correlations strongly influence two-cluster distri-
bution functions, such dW pW in 3HW e, dW dW in 4He, and adW in
6LW i. The two-cluster overlap functions are simply de-
fined as (Forest et al., 1996)


Aab~Ma ,Mb ,MJ ,rab!


5^ACa ,Ma
Cb ,Mb


,rabuCMJ
&


5 (
LMLSMS


^LML ,SMSuJMJ&


3^JaMa ,JbMbuSMS&RL~rab!YLML
~ r̂ab!, (7.24)


where rab is the relative coordinate between the centers
of mass of the two clusters, and A is an antisymmetriza-
tion operator for the two-cluster state. The RL(rab) ra-
dial functions are obtained from


RL~rab!5 (
MaMbMLMS


^JaMa ,JbMbuSMS&


3^LML ,SMSuJMJ&


3E dR@ACa ,Ma
~Ra!Cb ,Mb


~Rb!#†YLML
* ~ r̂ab!


3
d~r2rab!


rab
2 CMJ


~R!, (7.25)


where Ra(b) represents the coordinates of particles in
cluster a(b).


The dW pW , dW dW , and dW a overlap functions in, respectively,
3He, 4He, and 6Li have recently been calculated with
Monte Carlo methods using realistic wave functions
(Schiavilla, Pandharipande, and Wiringa, 1986; Forest
et al., 1996). Angular momentum and parity selection
rules restrict the sum over L in Eq. (7.24) to L50 and 2.
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Incidentally, the radial functions RL(rab) provide infor-
mation on the asymptotic properties of the overlap func-
tions. These can be experimentally determined, al-
though indirectly, from distorted-wave Born-
approximation (DWBA) analyses of transfer reactions
(Eiró and Santos, 1990). Two such properties are the D2
parameter,


D2
ab5


E R2~rab!rab
4 drab


15E R0~rab!rab
2 drab


, (7.26)


and the asymptotic D/S ratio hab5C2
ab/C0


ab , where C0


and C2 are the asymptotic normalization constants of
R0(r) and R2(r), respectively:


RL~rab!5 lim
rab→`


2iLCL
abhL~ iaabrab!. (7.27)


Here hL is the spherical Hankel function of the first kind
and aab is the wave number associated with the separa-
tion energy of the nucleus into clusters a and b . Theo-
retical estimates for D2


ab and hab are compared with the
values extracted from experiment (Sen and Knutson,
1982; Karp et al., 1984) in Table XIV. It should be em-
phasized that the theoretical estimates obtained from
variational wave functions may not be very accurate, as
these wave functions minimize the energy, to which
long-range configurations contribute very little.


Going back to the short-range structure, it is interest-
ing to study the two-cluster densities defined as


rab
Ma ,Mb ,MJ~rab!5uAab~Ma ,Mb ,MJ ,rab!u2. (7.28)


They exhibit spin-dependent spatial anisotropies which
are easily understood in terms of the toroidal or dumb-
bell structure of the polarized deuteron. To illustrate
these features, the dW dW densities in 4He are shown in Fig.
44 for two different spatial configurations of the
deuterons—along the spin-quantization axis (the ‘‘z
axis’’) and in the plane perpendicular to it (the ‘‘xy
plane’’; Forest et al., 1996). The dd cluster density is
largest when the two Md50 deuterons are positioned
one on top of the other—that is, the two tori share a
common axis—and the cluster density is smallest when
the two Md50 deuterons lie one next to the other—that
is, the two tori are both in the xy plane. A similar analy-
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sis can be made when the two deuterons are, respec-
tively, in the states Md51 and Md521, i.e., in the
dumbbell-like shapes.


Similar features are shared by the dW pW cluster densities
in 3He and the dW a cluster densities in 6Li: the density is
enhanced in the direction corresponding to the most ef-
ficient or compact placement of the deuteron relative to
the remaining cluster, and it is reduced in those direc-
tions that would lead to very extended structures (Forest
et al., 1996).


These structures are expected to produce cross-
section asymmetries in experiments such as (e ,e8aW )bW .
In the plane-wave impulse approximation, the cross sec-
tion for this latter process is in fact proportional to the
momentum distribution uÃab(Ma ,Mb ,MJ ,p)u2 obtained
from the Fourier transform of the overlap function
Aab(Ma ,Mb ,MJ ,rab) (Jacob and Maris, 1966, 1973;
Frullani and Mougey, 1984). These momentum distribu-
tions have been calculated by Forest et al. (1996) for the
dW pW , dW dW , and adW overlaps; they depend strongly on the
relative orientation between the cluster-spin projections
and the momentum p (the missing momentum).
Of course, final-state interaction effects and two-body
corrections to the charge and current operators
will complicate the analysis of these experiments
(Schiavilla, 1990; Glöckle et al., 1995), in particular the
extraction, from the measured asymmetries, of the
uÃab(Ma ,Mb ,MJ ,p)u2 momentum distributions. How-
ever, the experimental confirmation, as of yet still lack-
ing, of the short-range structures discussed above would
be most interesting.


E. Evidence for short-range correlations from inclusive
(e,e8) longitudinal data


Perhaps the clearest experimental evidence for the
presence of short-range correlations in the ground-state


FIG. 44. Density distributions of dW dW clusters in 4He in parallel
(u50) and transverse (u5p/2) directions. From Forest et al.
(1996).
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wave function, at least in light nuclei, is from inclusive
(e ,e8) longitudinal data. It has long been known that the
total integrated strength of the longitudinal response
function RL(q ,v) measured in inclusive electron scat-
tering [the so-called Coulomb sum rule SL(q)],


SL~q !5
1
ZE


vel
1


`


dvSL~q ,v!,


SL~q ,v![RL~q ,v!/uGE ,p~q ,v!u2, (7.29)


is related to the Fourier transform of the proton-proton
distribution function (Drell and Schwartz, 1958; McVoy
and Van Hove, 1962). In Eq. (7.29), GE ,p is the proton
electric form factor, and vel is the energy of the recoil-
ing A-nucleon system with Z protons (the lower integra-
tion limit excludes the elastic electron-nucleus contribu-
tion). The SL(q) can be expressed as


SL~q !5
1
Z


^0urL
† ~q!rL~q!u0&2


1
Z


u^0urL~q!u0&u2


[11rLL~q !2ZuFL~q !u2, (7.30)


where u0& is the ground state of the nucleus, rL(q) is the
nuclear charge operator, FL(q) is the longitudinal form
factor [divided by GE ,p(q ,vel)] normalized as FL(q
50)51, and a longitudinal-longitudinal distribution
function has been defined as


rLL~q ![
1
ZE dVq


4p
^0urL


† ~q!rL~q!u0&21. (7.31)


If relativistic corrections and two-body contributions to
the nuclear charge operator are neglected, then rL(q)
(divided by the electric proton form factor) is simply
given by


rL~q!. (
i51,A


e iq•ri~11tz ,i!/2, (7.32)


and the resulting longitudinal-longitudinal distribution
function can be written as


rLL~q !5E dr1dr2j0~qur12r2u!rLL~r1 ,r2!, (7.33)


with


rLL~r1 ,r2!5
1


4Z(
i5” j


^0ud~r12ri!d~r22rj!~11tz ,i!


3~11tz ,j!u0&, (7.34)


E dr1dr2rLL~r1 ,r2!5Z21. (7.35)


Note that, within this approximation and in the limit q
→` , SL(q)→1 (that is, in the large-momentum-transfer
limit), the longitudinal cross section is due to the inco-
herent contributions from the Z protons. In this case,
the longitudinal-longitudinal distribution function gives
the probability of finding two protons at positions r1 and
r2, regardless of their spin-projection states. Such a
quantity is, therefore, sensitive to the short-range corre-
lations induced by the repulsive core of the NN interac-
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tion (Schiavilla et al., 1987). Naively, one would expect
that for noninteracting nucleons


rLL ,unc.~Z21 !rL~r1!rL~r2!, (7.36)


rL~r!5
1


2Z (
i51,A


^0ud~r2ri!~11tz ,i!u0&. (7.37)


However, the expression above ignores the statistical
correlations due to the Pauli exclusion principle obeyed
by the nucleons as well as the ‘‘minimal’’ correlations
induced by the conservation of the center-of-mass posi-
tion. In light nuclei, the first are negligible, while the
second are important only at low momentum transfer
(Schiavilla et al., 1987). The corresponding ‘‘uncorre-
lated’’ Coulomb sum rule is given by


SL ,unc~q !512uFL~q !u2, (7.38)


and therefore only the difference between SL(q) and
SL ,unc(q) [or between rLL(q) and rLL ,unc(q)] provides
a measure of the strength of the correlations.


Direct comparison between the calculated Coulomb
sum rule and the experimental data is not possible, since
SL(q) includes contributions from both spacelike (v
,q) and timelike (v.q) regions. In practice, SL(q)
can be measured up to some vmax,q by inclusive elec-
tron scattering. The residual integral from vmax to ` is
then obtained from estimates of RL(q ,v.vmax) that
satisfy energy-weighted sum rules WL


(n)(q),


WL
~n !~q !5


1
ZE


vel
1


`


dvvnSL~q ,v!, (7.39)


calculated theoretically (Schiavilla, Fabrocini, and Pan-
dharipande, 1987; Schiavilla, Pandharipande, and Fabro-
cini, 1989). These can simply be expressed as expecta-
tion values of commutators of the charge operator with
the Hamiltonian. For example, the n51 sum rule is
given by


WL
~1 !~q !5


1
2Z


^0u†rL
† ~q!,@H ,rL~q!#‡u0&2


1
Z


veluFL~q !u2


(7.40)
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2m
1


1
2Z


^0u†rL
† ~q!,@v21V3 ,rL~q!#‡u0&


2
1
Z


veluFL~q !u2, (7.41)


where v2 and V3 are the two- and three-body potentials.
The charge-exchange part of the NN interaction, par-
ticularly the one-pion-exchange potential, leads to a
strong enhancement of the energy-weighted sum rule
over that obtained in the limit of noninteracting nucle-
ons (the Fermi-gas limit)—that is, q2/2m .


In light nuclei, reasonable agreement between theory
and experiment is obtained for the Coulomb sum rule
(Schiavilla, Pandharipande, and Fabrocini, 1989), as il-
lustrated in Fig. 45 (2H data from Dytman et al., 1988;
3H data from Dow et al., 1988; 3He data from Marchand
et al., 1985, and Dow et al., 1988; 4He data from von
Reden et al., 1990). The open dots labeled SL ,tr in this
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figure show the integral of the experimental data up to
vmax ; the filled dots show the complete integral with the
theoretically extrapolated RL(q ,v.vmax). The dashed
lines show values for the SL ,unc(q) in 3He and 4He ob-
tained from Eq. (7.38), neglecting the correlations be-
tween the protons. Their effect is rather small. Note that
in 2H and 3H the SL(q) is, in the approximation given
by Eq. (7.32), exactly given by the SL ,unc(q), since there
is only a single proton.


Of course, the nuclear charge operator, in addition to
the dominant proton contribution, also includes relativ-
istic corrections and two-body components. Their effect
on the SL(q) is very small in the q range covered by the
present experiments, but it does reduce the small sys-
tematic discrepancies between the theoretical and mea-
sured Coulomb sum rules (Schiavilla, Wiringa, and Carl-
son, 1993). However, the importance of these
contributions is enhanced when considering the
longitudinal-longitudinal distribution function. This
quantity is shown in Fig. 46 for 4He (the Saclay data are
from Zghiche et al., 1993; the Bates data from von Re-
den et al., 1990, give similar values for the longitudinal-
longitudinal distribution function). The large error bars
on the experimental rLL(q) reflect predominantly sys-
tematic uncertainties associated with the tail contribu-
tion (Beck, 1990; Schiavilla, Wiringa, and Carlson,
1993). The agreement between the experimental analy-
sis and the results of calculations in which both one- and
two-body terms are included in rL(q) is rather good.
This situation is reminiscent of that encountered in the


FIG. 45. The experimental SL ,tr (open data points) and tail-
corrected SL (filled data points with error bars) compared with
theory in 2H, 3H, 3He, and 4He. Solid lines, Schiavilla, Pan-
dharipande, and Fabrocini, 1989; dashed curves, the SL ,unc of
3He and 4He. Data for 3He:O, Saclay (Marchand et al., 1985);
h , Bates (Dow et al., 1988). Data for 2H: Bates (Dytman et al.,
1988). Data for 3H, Dow et al., 1988; for 4He von Reden et al.,
1990.
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charge form factors of 3H, 3He, and 4He, in which the
two-body charge operators play a crucial role in repro-
ducing the data in the diffraction minimum. Figure 46
shows an interesting interplay between correlation ef-
fects in the ground-state wave function and relativistic
and two-body corrections to the longitudinal transition
operator. Note that the rLL ,unc(q) is at variance with the
data: the zero is shifted to much higher momentum
transfer, and the strength of the secondary maximum is
greatly underestimated.


As a final remark, we note that the present experi-
mental situation with regard to the Coulomb sum rule in
heavier nuclei is controversial. The original analysis of
the Saclay data indicated substantial lack of strength, as
much as 40%, in the longitudinal response of nuclei like
40Ca and 56Fe (Meziani et al., 1984). More recently,
however, an independent reanalysis of the 56Fe world
data shows that the resulting integrated longitudinal
strength is not quenched with respect to the model-
independent prediction SL(q).1 at large q (Jourdan,
1995). This reanalysis combined Saclay, Bates, and
SLAC data covering a wide range of values in the
virtual-photon longitudinal polarization parameter e
[the longitudinal response is extracted from the slope of
the (e ,e8) cross section as function of e]. The analysis of
inclusive electron scattering from heavy nuclei and, in
particular, the separation of the cross section into its
longitudinal and transverse contributions, is further
complicated by distortion effects of the electron waves
in the nuclear Coulomb field (Orlandini and Traini,
1991). The latter have been found to be negligible in
light nuclei.


FIG. 46. The experimental longitudinal-longitudinal distribu-
tion function (LLDF) of 4He, obtained from the measured
charge form factor and tail-corrected Coulomb sum-rule data
(Saclay), compared with theory (Schiavilla, Wiringa, and Carl-
son, 1993). The curve labeled pp only takes into account the
proton contributions to the nuclear charge operator, while that
labeled TOT also includes contributions from two-body charge
operators and relativistic corrections. Also shown is the LLDF
for uncorrelated protons (curve labeled pp ,unc). Note that the
empty and filled circles denote positive and negative values for
the experimental LLDF.
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The current state of affairs with regard to Coulomb
sum measurements in heavy nuclei is clearly unsatisfac-
tory. The experimental controversy needs to be re-
solved.


F. Momentum distributions


The nucleon momentum distribution is given by


Nst~p!5^0uast
† ~p!ast~p!u0&, (7.42)


where u0& is the ground state of the nucleus, and ast(p)
and ast


† (p) are annihilation and creation operators for a
nucleon in the spin-isospin state st with momentum p.
In the coordinate representation, the Nst(p) can be
written as


Nst~p!5E dr18dr1dr2•••drAC0
†~r18 , . . . ,rA!


3eip•~r182r1!Pst~1 !C0~r1 ,. . . ,rA!, (7.43)


Pst~1 !5
1
4


~11ssz ,1!~11ttz ,1!, s ,t561. (7.44)


It has the normalization


(
st561


E dp


~2p!3
Nst~p!5A . (7.45)


Short-range and tensor correlations induce high-
momentum components in the nuclear ground states.
This is clearly seen in Fig. 47, where the momentum
distributions of s561 neutrons in a 3He nucleus with
polarization 1 1


2 are shown (Carlson and Schiavilla,
1997). In the absence of tensor correlations (and, there-
fore, D-state admixtures in the 3He ground state) the
momentum distribution Ns521,t521 would vanish. In-
deed, these correlations are responsible for most of the
high-momentum components in the nuclear ground
states (Pieper, Wiringa, and Pandharipande, 1992).


It is interesting to compare the nucleon momentum
distributions (normalized to one rather than to A) of
2H, 3H, 4He, 16O, and nuclear matter. The A53 and 4
nuclei N(p) (summed over s and t) have been calcu-
lated by several groups from a variety of interaction
models (Zabolitzky and Ey, 1978; Akaishi, 1984; Ciofi
degli Atti, Pace, and Salmè, 1984; Schiavilla, Pandhari-
pande, and Wiringa, 1986; Ciofi degli Atti, Pace, and
Salmè, 1991). Those shown in Fig. 48 are obtained from
variational wave functions corresponding to a Hamil-
tonian that includes the Argonne v14 two-nucleon and
Urbana model VIII three-nucleon interactions (Pieper,
Wiringa, and Pandharipande, 1992). The nuclear matter
N(p), instead, has been calculated with chain-
summation techniques from a correlated wave function,
using the older Urbana v14 two-nucleon interaction,
supplemented by density-dependent terms that simulate
the effect of three-nucleon interactions (Fantoni and
Pandharipande, 1984).


The momentum distributions of A.2 nuclei are
found to be approximately proportional, in the limit of
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large momenta p , to that of the deuteron, as shown in
Fig. 48. In particular, the high-momentum tails of the
A.3 nuclei N(p) display a rather weak dependence on
A .


G. Spectral functions


The probability for removing a nucleon of momentum
p in spin-isospin state st from an A-nucleon system,
and leaving the residual A21 system with an internal
excitation energy E , is given by the spectral function
Sst(p,E),


Sst~p,E !5(
f


u^A21;fuast~p!uA ;0&u2


3d~E1E0
A2Ef


A21!, (7.46)


FIG. 47. Momentum distributions in a spin-up 3He nucleus: p ,
proton; n neutron; (n ,up), neutron spin-up; (n ,down), neutron
spin-down. From Carlson and Schiavilla (1997).


FIG. 48. The N(p)5(s ,tNs ,t(p) per nucleon in 2H, 3He,
4He, 16O, and nuclear matter (n.m.) From Pieper, Wiringa,
and Pandharipande (1992).
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where the sum is extended over all states of the A21
system having energies Ef


A21 , and E0
A is the energy of


the A-nucleon ground state uA ;0&. The spectral function
obeys the sum rule


E
E0


A21
2E0


A


`


dE Sst~p,E !5Nst~p!, (7.47)


where E0
A21 is the ground-state energy of the residual


system. In fact, the contribution associated with the
high-energy tail of the spectral function is crucial in satu-
rating the sum rule at large p .


The spectral functions can in principle be measured in
knockout reactions, such as (e ,e8p) reactions. In the
plane-wave impulse approximation (PWIA), the cross
section for these processes can be shown to be propor-
tional to Sp(pm ,Em) (summed over s for unpolarized
scattering), where pm5p2q and Em5v2T12TA21
are, respectively, the so-called missing momentum and
energy; T1 and TA21 are the kinetic energies of the
knocked-out nucleon and recoiling A –1 system, and v
and q are the energy and momentum transferred by the
lepton probe. Of course, the PWIA ignores the final-
state interactions between the outgoing and spectator
nucleons. Furthermore, it requires for its validity that
the probe-nucleus coupling be given by the sum of A
one-body operators. Thus final-state interactions—as
well as many-body components in the transition opera-
tors, such as meson-exchange currents in the case of
(e ,e8p) reactions—complicate the interpretation of
knockout processes and make the extraction of the spec-
tral function from the data more difficult (Schiavilla,
1990; Glöckle et al., 1995).


In the deuteron, the spectral function is simply given
by Sp(p,E)5Np(p)d(E1E0


d), where E0
d522.225 MeV


is the deuteron bound-state energy. The Sp(p,E) of 3He
(Meier-Hajduk et al., 1983) and 4He (Morita and Su-
zuki, 1991) have been calculated, respectively, with Fad-
deev and variational methods from realistic interactions
[the 3He S(p,E) is displayed in Fig. 49, after Meier-
Hajduk et al., (1983)]. Reliable approximations of these
spectral functions (Ciofi degli Atti et al., 1991; Benhar
and Pandharipande, 1993) have also been obtained by
using the momentum distributions of nucleons and
nucleon clusters in the A53 and A54 ground states,
such as, for example, dd and tp in 4He. The only other
system for which realistic calculations of the spectral
function have been carried out is nuclear matter. These
latter calculations have used either correlated basis
theory (Benhar, Fabrocini, and Fantoni, 1989, 1991) or
the Green’s-function method (Ramos, Polls, and Dick-
hoff, 1989), but both give quite similar predictions for
the nuclear matter S(p,E).


The effect of correlations on the spectral function is
easily understood by comparing realistic calculations of
it with the Fermi gas model prediction. The latter is
given by


SFG~p ,E !5u~pF2p !dS E1
p2


2m D , (7.48)
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FIG. 49. The proton spectral function in 3He, as obtained by Meier-Hajduk et al. (1983).

where pF is the Fermi momentum. As can be seen from
Figs. 50 and 51 (Benhar, Fabrocini, and Fantoni, 1991),
the nuclear matter S(p,E) (at equilibrium density, i.e.,
pF51.33 fm21) is characterized by a large background
extending over a wide energy range both above and be-
low the Fermi level. This background is produced by
dynamic (short-range and tensor) correlations. When p
,pF , the d function of the Fermi gas model is replaced
by a peak, the width of which gives the lifetime of the
quasihole state. As p approaches pF from below, this
peak becomes sharper and sharper; its strength, which is
denoted by Z(p), has been shown by Migdal (1957) to
be equal, in normal Fermi liquids and in the limit p
→pF , to the magnitude of the discontinuity of the
nuclear matter momentum distribution—that is, Z(p
→pF)5N(pF


2)2N(pF
1). Realistic calculations predict a


value for Z(p.pF) of 0.71 in nuclear matter (Benhar,
Fabrocini, and Fantoni, 1991). In the Fermi gas, Z(pF)
51, and so 12Z(pF) is a measure of the strength of the
correlations.


The notion of quasihole states is also useful in discuss-
ing the low-lying levels of finite systems (Pandhari-
pande, 1990); for example, 3H and 207Tl can be viewed
as (1s1/2)21 and (3s1/2)21 hole states in the doubly
closed-shell nuclei 4He and 208Pb, respectively. These
states have zero width, since they cannot decay by
strong interactions. In finite nuclei, quasihole wave func-
tions are simply related to the 11(A –1) cluster ampli-
tudes, defined above. In the shell model, in which
nuclear wave functions are approximated by Slater de-
terminants of single-nucleon wave functions fnlj , the
quasihole orbital cnlj coincides with fnlj . In particular,

Rev. Mod. Phys., Vol. 70, No. 3, July 1998

the normalization of cnlj , which is also known as the
spectroscopic factor Znlj , would be one in this case.
However, correlation effects reduce the spectroscopic
factor and make the quasihole wave function more sur-
face peaked than the mean-field one (Lewart, Pandhari-
pande, and Pieper, 1988; Pandharipande, 1990). Of
course, quasihole orbitals of nuclei with A.4 have not
yet been calculated from realistic interactions. In the a
particle, the Z1s1/2 is about 0.81. In heavy nuclei, the
spectroscopic factors are expected to be even smaller


FIG. 50. The hole spectral function for p51.2 fm 21 in nuclear
matter at equilibrium pF51.33 fm 21, as obtained by Benhar,
Fabrocini, and Fantoni (1989).
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than the nuclear matter Z(pF)50.7 because of surface
effects (Pandharipande, Papanicolas, and Wambach,
1984). For example, the 208Pb Z3s1/2 is estimated to be
.0.660.1.


VIII. SCATTERING METHODS


Two distinct energy regimes are of interest in few-
nucleon scattering problems below the pion-production
threshold. The first is low-energy scattering, where ‘‘low-
energy’’ is defined to be the regime in which only
breakup into two-body clusters is possible. In the
nuclear three-body problem, this regime lies between
zero and the deuteron binding energy Bd52.225 MeV in
the center-of-mass (c.m.) frame, while for A54 it lies
between zero and Bt –Bd , where Bt58.48 MeV is the
triton binding energy. Many intriguing physical pro-
cesses have been measured in this regime, including
scattering lengths, total cross sections, polarization ob-
servables, and radiative-capture reactions. Of course,
this is also the regime in which weak-capture reactions
of astrophysical interest occur.


Scattering calculations naturally divide into low- and
high-energy regimes because the dominant physical pro-
cesses can be quite distinct. In low-energy reactions, the
clustering properties of the nuclear wave function are
extremely important, precisely because the relevant en-
ergies are near nuclear thresholds. For the same reason,
a complete treatment of the long-ranged Coulomb inter-
action is crucial in many cases. In higher-energy (quasi-
elastic) regimes, however, it is one- and two-body pro-
cesses that typically dominate. Even so, it is often
important and practical (at least for three-body prob-
lems) to treat multiple-scattering effects completely.


These distinctions also manifest themselves in the al-
gorithms. In momentum-space calculations, the treat-
ment of the poles of the Green’s functions is quite im-
portant. In configuration space, one must specify the


FIG. 51. The hole spectral function for p52.26 fm 21 in
nuclear matter at equilibrium pF51.33 fm 21, as obtained by
Benhar, Fabrocini, and Fantoni (1989).
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boundary conditions on the wave function for all pos-
sible breakup channels. Of course, the physical bound-
ary conditions are the same in either the Faddeev or the
correlated hyperspherical harmonics algorithms. Here
we discuss them within the Faddeev description.


In both momentum and coordinate space, one must
take care to obtain the solution corresponding to the
physical process of interest—often incoming plane
waves in one channel only. There are also important
experiments in which different boundary conditions are
appropriate, of course, including electromagnetic-
scattering experiments. We shall postpone discussions of
methods for inclusive response calculations to a later
section.


A. Configuration-space Faddeev equations


One of the original motivations for using the Faddeev
equations was to treat the scattering problem for three
particles. Typically, a solution is to be constructed with
an incoming plane wave in one channel only, and vari-
ous possible final states. The Faddeev equations are well
suited to studying this type of problem, because it is
comparatively easy to obtain these physical scattering
solutions. Furthermore, the partial-wave decomposition
employed in Faddeev calculations is still quite valuable
because the angular momentum barrier and the small
size of nuclear ground states implies, at least at low en-
ergies, that one can still deal with a modest number of
partial waves.


The boundary conditions for scattering, even below
the three-nucleon breakup threshold, are somewhat
more involved than for bound states. In general, more
than one final state may be available. For three distin-
guishable particles, there are various possibilities, in-
cluding elastic scattering, where asymptotically 1(23)
→1(23) (the brackets indicating bound subclusters), as
well as rearrangement scattering corresponding to
1(23)→2(13) or 1(23)→3(12). Of course, in the scat-
tering regime the solution of the Schrödinger equation
for a given energy E is in general not unique. It has been
shown that simply converting the Schrödinger equation
to a Lippman-Schwinger equation whose form guaran-
tees outgoing waves in all channels does not provide a
unique solution (Foldy and Tobocman, 1957). The diffi-
culty is that the amount of incoming wave in each chan-
nel is not controlled. Various methods have been used
to overcome this problem, including the triad (Glöckle,
1970) equations and the Faddeev equations (Faddeev,
1960). In this section we follow the discussion in Friar
and Payne (1996). Interested readers should consult that
article for a much more complete treatment.


In configuration space, the Faddeev equations [see
Eq. (3.4)] are the most common technique for dealing
with the rearrangement problem; since each equation
deals with only one interacting pair, the boundary con-
ditions are fairly straightforward. The first equation con-
tains only v12 , so only particles 1 and 2 can be bound
asymptotically in c1. The rearrangement channels are
contained in c2 and c3, which, for identical particles, are
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the same function as c1 but for different arguments.
Hence this decomposition of the Schrödinger equation
into three equations has solved the rearrangement prob-
lem.


For low-energy scattering, the Coulomb interaction is
important, leading to dramatically different physics—
hence the Faddeev equations need to be modified. A
straightforward inclusion of the Coulomb interaction in
the Faddeev equations via v jk→v jk1vc(xi) is far from
optimum because there is no obvious Coulomb interac-
tion in the y coordinate that would describe the repul-
sion between an outgoing proton and a deuteron in pd
scattering. Far better (Friar, Gibson, and Payne, 1983;
Kuperin et al., 1983) is to include the full Coulomb po-
tential ( ivc(xi) on the left-hand side of the equation for
each Faddeev amplitude:


FE2H02v232(
i


vc~xi!Gc1~x1 ,y1!


5v23@c2~x2 ,y2!1c3~x3 ,y3!# . (8.1)


Summing the three cyclic permutations again repro-
duces the Schrödinger equation, but now the amplitudes
c obey physically meaningful boundary conditions. This
form is called the Faddeev-Noble equation (Noble,
1967) and has been used by Merkuriev and collaborators
(Merkuriev, 1976; Kuperin et al., 1983).


Returning now to the boundary conditions, we re-
quire that the wave function be finite and consist of an
initial plane wave plus outgoing scattered waves. The
latter conditions are imposed for large x and y, or,
equivalently, large r[(x21y2)1/2 as a function of u ,
where cosu5 x̂• ŷ.


Below deuteron breakup, the boundary conditions are
determined in a rather straightforward way as in stan-
dard two-body calculations. The amplitude at large val-
ues of y must be proportional to


c~x,y! ;
y→`


cd~x!fNd~y!, (8.2)


where cd is the internal deuteron wave function and
fNd is the relative nucleon-deuteron wave function. In
the absence of Coulomb forces, the asymptotic nd wave
function fnd in each partial wave is proportional to


fnd~y!5e idL@ jL~ky !cosdL2nL~ky !sindL#YLM~ ŷ!,
(8.3)


where y is the distance between the n and d clusters,
and the c.m. energy is given by E5k2/2m . For cases of
coupled channels or energies above breakup, the phase
shift may be complex. For the Coulomb case, the
asymptotic wave function is


fpd~y!5e i~dL1sL!@FL~h ,ky !cosdL


1GL~h ,ky ! sindL#YLM~ ŷ!/~ky !, (8.4)


where sL is the Coulomb phase shift, sL5arg@G(L11
1ih)# , h is the Coulomb parameter related to the prod-
uct of the two charges (h5mZ1Z2a/k). FL and GL are
the regular and irregular solutions of the Coulomb po-
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tential, respectively, and dL is the additional phase shift
produced by the nuclear interaction. Note that


lim
h→0


GL~h ,ky !/~ky !→2nL~ky !. (8.5)


This form is not directly suitable for zero-energy or very
near zero-energy calculations. At very small energies,
Coulomb calculations can be quite difficult due to sup-
pression of the wave function near the origin, and hence
one converts to asymptotic conditions normalized by an
additional factor of 1/(kyCLe isL), where CL is the Cou-
lomb barrier penetration factor, which for L50 is


C05@2ph/~e2ph21 !#1/2. (8.6)


The regular part of the solution FL(h ,ky)/(kyCLe is l)
}(zy)L/(2L11)!, where z52hk . Dividing out the
Coulomb penetration factors in this way yields well-
behaved functions.


Above breakup, the amplitude c(x,y)[c(x ,r ,u) is
nonzero everywhere for large r , not just in the regions
corresponding to a bound deuteron subcluster. In the
region of small x and large y , the amplitude correspond-
ing to three-body breakup cbr decreases as 1/y5/2. This
rapid decrease, when compared to the elastic cel , en-
ables one to separate the two contributions asymptoti-
cally:


c~x,y!5cbr~x,y!1cel~x,y!, (8.7)


where cel corresponds to elastic scattering.
In the asymptotic region, the interaction v23 can be


dropped from the Faddeev equation to obtain an equa-
tion


FH01(
i


vc~xi!2EGcbr50. (8.8)


Converting to hyperspherical coordinates, one can show
that the solution of this equation has the asymptotic
form


cbr}A
exp~ ikr!


r5/2
exp@ ih̄ln~2kr!#@11O~1/r!# , (8.9)


where A is a function of the angles in the c.m. frame and
h̄ is given by


h̄52rF(
i


vc~xi!G m


2k
, (8.10)


which is the three-body equivalent of the two-body Cou-
lomb parameter h . Taking the limit h̄→0 gives the nor-
mal (non-Coulomb) solution.


To obtain the asymptotic solution for x within the
range of the nuclear interaction, consider the Faddeev
equation


@E2Tx2Ty2v23#c~x1 ,y1!


5v23@c~x2 ,y2!1c~x3 ,y3!# . (8.11)


For the non-Coulomb case, we can replace the right-
hand side by v23bexp(iky)/y5/2, where b is again a func-
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tion depending upon angles that is determined by the
breakup amplitude (to lowest order). The amplitude c
in this regime is then


c~x,y!}bg~x!exp~ iky !/y5/21O~y27/2!, (8.12)


where g(x) satisfies


@Tx1v#g~x!52v . (8.13)


The homogeneous part of the solution for g is propor-
tional to the zero-energy scattering solution c0(x), with
a constant of proportionality denoted by g . The inhomo-
geneous part is formally given by


g~x!5
21


Tx1v
v[gel~x!1g in~x!. (8.14)


The inhomogeneous solution has been divided into the
part proportional to the deuteron wave function (gel)
and the remainder (g in). Thus we have for small x and
large y


c~x,y!}cel~x,y!1†b@gel~x!1g in~x!#1gc0~x !‡


3exp~ iky !/y5/2. (8.15)


The terms in this expression correspond to direct elastic
scattering, elastic rearrangement, inelastic recombina-
tion, and direct inelastic scattering, respectively. This ex-
pression matches the previous expression for x larger
than the range of the nuclear interaction and completes
the asymptotic expressions for the Faddeev amplitudes.
Of course, for a practical calculation one must deter-
mine where these asymptotic forms can be applied.
Some results on this subject have been published by
Glöckle and Payne (1992).


In addition to these leading terms at very small ener-
gies, one may wish to consider polarization effects, es-
sentially evaluating the deuteron’s dipole, quadrupole,
etc., moments and adding these to the long-distance be-
havior of the wave function. A discussion of this special-
ized point can be found in Friar and Payne (1996).


Once the boundary conditions have been specified
and a scattering solution obtained, it is extremely valu-
able to employ a variational principle both to check the
calculations and to improve the estimate of the scatter-
ing matrix. For bound states, it is well known that an
approximate wave function C accurate to order dC in
C2C0 produces a variational estimate of the energy
^CuHuC& accurate to order (dC)2. For scattering calcu-
lations, one can do something similar, although care
must be taken with the boundary conditions.


Coordinate-space scattering calculations are necessar-
ily performed within a finite volume and then matched
at the boundary to the asymptotic wave functions.
Within this boundary, one can construct a functional
I@C# ,


I@C#5^CuHW 2EuC&, (8.16)


and vary the wave function C→C01dC , yielding


dI5^C01dCuHW 2EuC01dC&2^C0uHW 2EuC0&


5^dCuHW 2EuC0&1^C0uHW 2EudC&
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1^dCuHW 2EudC&, (8.17)


where the arrow on the Hamiltonian is to remind one
that H is not a Hermitian operator when acting within
the finite volume. The first term on the right-hand side is
zero since (HW 2E)uC0&50. The second term is given by
a surface integral:


dS5^C0uHW 2EudC&


52~1/2m!E dS n̂•@~¹C0!†dC2C0
†¹dC# ,


(8.18)


which results from integrating by parts the kinetic-
energy operator and again using (HW 2E)uC0&50. Evi-
dently, then, the variational principle for scattering
states is given by


dI2dS5^dCuH2EudC&, (8.19)


as originally formulated by Kohn (1948). Note that this
is a stationary principle rather than an extremum, since
dI2dS is not necessarily positive. However, this varia-
tional principle is very important because, for any wave
function accurate to order dC , it can be used to obtain
the elements of the scattering matrix accurate to order
(dC)2.


A variety of coordinate-space scattering calculations
have been carried out with Faddeev and CHH tech-
niques. Below breakup, many interesting reactions have
been studied, some of which will be presented in the
next sections. Above breakup, comparisons between
momentum- and coordinate-space representations indi-
cate that both methods can be made to work reliably
(Friar et al., 1990a; Friar et al., 1995). Many new results
with full inclusion of the Coulomb interaction can be
expected within the next several years.


B. Momentum-space Faddeev equations


In momentum space, additional issues are also present
when addressing the scattering regime. Again, the prob-
lem has to be formulated in a way guaranteed to corre-
spond to the physical process of interest. Numerically,
the primary concern is the treatment of the singularities
in the propagators. Let us first consider the case of dis-
tinguishable particles, in which an outgoing scattering
state C(1) obtained from an initial asymptotic arrange-
ment of particles described by f is given by


C~1 !5 lim
e→0


ie
E1ie2H


f . (8.20)


In the standard Faddeev decomposition, the following
identity is useful:


1
E1ie2H


5
1


E1ie2H02v jk
1


1
E1ie2H02v jk


3~v ik1v ij!
1


E1ie2H
, (8.21)
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where H5H01v jk1vki1v ij . A state f1, which de-
scribes the initial scattering state and is an eigenstate of
H1[H01v23 , will obey the Lippman identity (Lipp-
man, 1956),


lim
e→0


ie
E1ie2Hi


f15d i ,1f1 , (8.22)


and hence


C1
~1 !5d i ,1f11 lim


e→0


1
E1ie2Hi


C1
~1 ! . (8.23)


This expression provides one inhomogeneous and two
homogeneous equations which define C1


(1) uniquely
(Glöckle, 1970). Obviously this state is an eigenstate of
the Schrödinger equation, and similar equations with in-
homogeneous terms in i52,3 define C2


(1) and C3
(1) .


Requiring the three equations to be fulfilled simulta-
neously rules out admixtures of C2 and C3 in C1. More-
over, it is easy to see that this solution contains no ad-
mixtures of three free particles in the initial state.


From a solution of this triad of equations, the ampli-
tude of the outgoing radial wave in the channel where
particles j and k are bound together can be obtained
from


Ai ,15^f iuv ij1v ikuC1
~1 !&, (8.24)


which can be used to define a transition operator from
initial state 1 to final state i :


Ui1uf1&[~v ij1v ik!uC1
~1 !&. (8.25)


The operators Ui1 are the elastic (U11) or rearrange-
ment (U21 and U31) operators, respectively. The
breakup operator will be described below.


Writing out the equations for the Ui1 and inserting the
various expressions for C1


(1) , one obtains coupled equa-
tions for the Ui1 acting on f1 in terms of the interactions
v ij and Gi , where Gi[lime→01/(E1ie2Hi):


U11f15v13G2U21f11v12G3U31f1 ,


U21f15v23f11v23G1U11f11v12G3U31f1 , (8.26)


U31f15v23f11v23G1U11f11v13G2U21f1 .


After some manipulations, one can use the identities
v23f15G0


21f1 and v jkGi5TiG0, in which the scattering
operators Ti are again the three-particle propagators
with only two particles interacting [see Eq. (3.10)], to
derive a coupled set of equations for the U in terms of
the Ti and G0:


Ui1f15~12d i ,1!G0
21f11(


jÞi
TjG0Uj1f1 . (8.27)


These equations are the Alt, Grassberger, and Sandhas
(1967) or AGS equations for the transition operators
Ui1.


For identical particles, one antisymmetrizes these
equations, yielding an equation for the transition opera-
tor into final state i from an antisymmetrized initial
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state. The outgoing wave function is C(1)5C1
(1)


1C2
(1)1C3


(1) , and the transition operator is given by


Uif1[(
k


Uikfk5(
kÞi


G0
21fk1(


jÞi
TjG0Ujf1 .


(8.28)


Of course, there is only one independent operator U for
three identical particles, so the equation can be written


Uf5G0
21Ef1ETG0Uf , (8.29)


which generates the operator U appropriate for elastic
scattering. The operator E is again the sum of the two
cyclic permutations. For calculations with realistic
forces, it is more convenient to define T̄[TG0U , which
leads to an equation


T̄f5TEf1TG0ET̄f . (8.30)


This is the central equation for scattering calculations.
The elastic scattering transition is given by


Uf5EG0
21f1ET̄f . (8.31)


The transition operator U0 to states in the continuum
is obtained from an amplitude


A05^f0u~v ij1v ik1v jk!uC1
~1 !1C2


~1 !1C3
~1 !&. (8.32)


The transition operator U0 to three-body continuum
states is U0f5(( ijv ij)(C1


(1)1C2
(1)1C3


(1)), which
yields


U0f[~11E!TG0Uf , (8.33)


where U is the elastic-scattering operator. In terms of T̄ ,
this is


U0f5~11E!T̄f . (8.34)


Three-nucleon interactions can be treated in several
ways. Complete treatments are presented in several ar-
ticles (Kowalski, 1976; Glöckle, 1983; Glöckle and Bran-
denburg, 1983). One possibility is to add another equa-
tion to the triad, invoking a Green’s function for the
Hamiltonian consisting of three free particles plus the
three-nucleon interaction (Glöckle et al., 1996). It is also
possible to incorporate the three-nucleon interaction di-
rectly into the standard Faddeev equations, as is done in
configuration space. Recently, Hüber et al. (1997) devel-
oped a new partial-wave expansion scheme for three-
nucleon interactions. This scheme is numerically more
stable for high partial waves and hence will prove par-
ticularly useful for applications at higher energies.


Ignoring this complication, the basic equation to be
solved is Eq. (8.30), which when decomposed into mo-
mentum magnitudes p ,q and angular momentum, spin-
isospin channels a is
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^pqauT̄uf&5^pqauTEuf&1(
a8


E dq8q82E dp8p82


3(
a9


E dq9q92E dp9p92


3^pqauTup8q8a8&^p8q8a8uEup9q9a9&


3^p9q9a9uG0T̄uf&. (8.35)


Again, the T matrix is diagonal in the spectator mo-
menta and involves the standard two-body t(2)-matrix
elements at an energy E23q2/4m . The number of
coupled equations is of the order of 60, as in coordinate-
space calculations. If one chooses 30–40 grid points in p
and q , the resulting matrix representation of the kernel
is of dimension roughly 72 000 by 72 000. This is not
inverted directly, but solved through an iterative proce-
dure (Witala, Cornelius, and Glöckle, 1988a, 1988b;
Cornelius, 1990; Hüber, 1993) that involves Padé ap-
proximants to the kernel of the scattering equation [Eq.
(8.30)].


In order to solve these equations, one must confront
the singularities in the propagators. The two-body t(2)


matrix has a pole at the deuteron binding energy, of
course, and hence in the three-body equation one hits
this pole for a specific value of q for any energy E above
deuteron threshold. The deuteron term in the t(2) matrix
can be evaluated explicitly and the pole handled by a
standard subtraction technique.


There are also free-propagator poles in this equation
for suitable values of p and q . These are more difficult
to treat, but can also be handled by subtraction tech-
niques; a detailed discussion of their treatment is beyond
the scope of this article. Detailed discussions can be
found in Witala, Cornelius, and Glöckle (1988a, 1988b);
Cornelius (1990); and Hüber (1993).


A large number of nd scattering reactions have been
carried out with the momentum-space Faddeev scheme.
Some of the impressive series of results are presented in
Sec. X; a more complete treatment is found in the re-
view article by Glöckle et al. (1996).


C. Monte Carlo methods


Due to the statistical error inherent in Monte Carlo
methods, it has proven useful to approach the low-
energy scattering problem in a slightly different manner
from that used in Faddeev or CHH methods. The pri-
mary reason is that the Kohn variational principle as
described above is a stationary principle, rather than an
extremum. Although variational Monte Carlo methods
could, in principle, be adopted, for the larger systems
(A>4), where the Monte Carlo methods have proven to
be most valuable, such calculations could be quite diffi-
cult due to the statistical errors in the integration.


An alternative method has been formulated, however,
which is quite useful in certain cases (Carlson, Pandhari-
pande, and Wiringa, 1984). The essence of this method
is to fix the boundary condition at the start of the calcu-
lation and again solve the eigenvalue problem. This is
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not very different from the Kohn principle above, but
instead of allowing arbitrary variations in C as before,
we allow only variations that do not change the bound-
ary conditions on the wave function. With this restric-
tion, the term dS in Eq. (8.18) is trivially zero, hence one
is simply solving the eigenvalue equation.


Returning to the one-channel case, specifying the
logarithmic derivative of the wave function and solving
for the energy E is an approach that can be used to
determine the phase shift at that energy. Assuming that
the boundary condition on the logarithmic derivative
DL of the wave function is specified at a distance R , we
have


¹C•n̂
C


U
R


5DL5
k@ jL8 ~kr !cosdL2nL8 ~kr !sindL#


@ jL~kr !cosdL2nL~kr !sindL#
,


(8.36)


which provides a simple relation between the logarith-
mic derivative, k (determined by the energy), and the
phase shift dL .


Since there is a variational upper bound, this method
can easily be incorporated within standard VMC or
GFMC algorithms. For a given boundary condition, the
error is proportional to (dC)2. For zero-energy scatter-
ing, one simply takes the asymptotic form of the wave
function (}r –a for S waves) and adjusts the trial scat-
tering length until a zero-energy eigenvalue is produced.


This procedure is more difficult for multichannel
problems, however. In general, an arbitrary choice for
the boundary conditions will not regulate the incoming
flux in the various channels, and hence the solution will
not correspond to a physical scattering process with an
incoming plane wave in one channel only. One way to
circumvent this difficulty would be to find different
boundary conditions that reproduce the same energy, or,
equivalently, to calculate the derivatives of energy with
respect to changes in the boundary conditions. The lat-
ter may be feasible and could also prove useful in calcu-
lating widths of resonances, etc.


IX. THE A52 –4 RADIATIVE AND WEAK-CAPTURE
REACTIONS AT LOW ENERGIES


Very low-energy radiative and weak-capture reactions
involving few-nucleon systems have considerable astro-
physical relevance for studies of stellar structure and
evolution (Clayton, 1983) and big-bang nucleosynthesis
(Kolb and Turner, 1990)—for example, in relation to the
mechanism for energy and neutrino production in main-
sequence stars, the process of protostellar evolution to-
wards the main sequence, or the predictions for the pri-
mordial abundances of light elements.


These same reactions are also very interesting from
the standpoint of the theory of strongly interacting sys-
tems, since their cross sections are very sensitive to the
model used to describe both the ground-state and con-
tinuum wave functions, and the two-body electroweak
current operators. Indeed, the 1H(n ,g)2H radiative cap-
ture provided the first convincing case of a significant
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(10%) and calculable two-body current effect in photo-
nuclear reactions (Riska and Brown, 1972). Even more
interesting are the 2H(n ,g)3H and 3He(n ,g)4He cap-
tures at thermal-neutron energies. Calculations of their
cross sections based on realistic bound-state and
continuum-state wave functions and one-body
currents—in the impulse approximation (IA)—predict
only about 50% and 10% of the corresponding experi-
mental values (Friar, Gibson, and Payne, 1990; Schia-
villa et al., 1992). This is because the IA transition op-
erator cannot connect the main S-state components of
the deuteron and triton (or 3He and 4He) wave func-
tions. Hence the calculated cross section in the IA is
small, since the reaction must proceed through the small
components of the wave functions, in particular the
mixed symmetry S8-state admixture (Schiff, 1937;
Austern, 1951). Two-body currents, however, do con-
nect the dominant S-state components, and the associ-
ated matrix elements are exceptionally large in compari-
son to those obtained in the IA (Friar, Gibson, and
Payne, 1990; Schiavilla et al., 1992).


The present section is organized into four subsections,
A–D. Section IX.A summarizes the relevant formulas
for the calculation of cross section and polarization ob-
servables. Formulas for the latter do not merely repre-
sent an academic exercise: in fact, vector and tensor ana-
lyzing powers have, in the last year, been measured in
the energy range 0–150 keV at TUNL for the
2H(pW ,g)3He and 1H(dW ,g)3He reactions using beams of
polarized protons and deuterons (Schmid et al., 1995,
1996; Ma et al., 1996). Sections IX.B–IX.D deal, in turn,
with the A52 1H(n ,g)2H and 1H(p ,e1ne)2H, A53
2H(nW ,gW )3H, 2H(pW ,g)3He, 1H(dW ,g)3He, and A54 3He
(n ,g)4He, 2H(d ,g)4He, 3He(p ,e1ne)4He capture reac-
tions at thermal-neutron and keV proton and deuteron
incident energies.


A. Cross section and polarization observables


In the c.m. frame, the radiative transition amplitude
between an initial two-cluster continuum state with clus-
ters A1 and A2 having spins J1M1 and J2M2, respec-
tively, and relative momentum p, and a final A-nucleon
bound state of spin JAMA (A11A25A) is given by
(Viviani, Schiavilla, and Kievsky, 1996)


jMAM2M1


l ~p,q!5^CA
JAMAuêl* ~q!•j†~q!uCp,M2M1


~1 ! &,
(9.1)


where q and v5q are the photon momentum and en-
ergy, and êl(q), l561, are the spherical components of
its polarization vector. The two-cluster wave function
C(1), satisfying outgoing wave boundary conditions, is
normalized to unit flux and has the following partial-
wave expansion:


Cp,M2M1


~1 ! 54p(
SSz


^J1M1 ,J2M2uSSz& (
LLzJJz


3iL^SSz ,LLzuJJz&YLLz
* ~ p̂!C̄A11A2


LSJJz , (9.2)
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C̄A11A2


LSJJz 5e isL (
L8S8


@12iJR#LS ,L8S8
21 CA11A2


L8S8JJz, (9.3)


where S is the channel spin, L is the relative orbital
angular momentum between clusters A1 and A2, JR is
the R matrix in the subspace with total angular momen-
tum J , and sL is the Coulomb phase shift, given by


sL5arg@G~L111ih!# , (9.4)


h5
Z1Z2a


vrel
. (9.5)


Here a is the fine-structure constant, and vrel is the rela-
tive velocity between clusters A1 and A2 with charges
Z1 and Z2, respectively. If no Coulomb interaction is
present between the clusters, then the factor eisL in Eq.
(9.3) should be omitted. The wave function CA11A2


LSJJz in


Eq. (9.3) describes the two interacting clusters and be-
haves asymptotically as


CA11A2


LSJJz ;
r→`


A~11dA1 ,A2
!


A1!A2!
A! (̀ ~21 !`


3 (
L8S8


†@fA1 ;J1
^ fA2 ;J2


#S8^ YL8~ r̂!‡JJz


3FdLL8dSS8


FL8~h ,pr !


pr
1JRLS


L8S8
GL8~h ,pr !


pr G ,


(9.6)


where fA1 ;J1M1
and fA2 ;J2M2


are the (antisymmetric and
normalized) bound-state wave functions of clusters A1
and A2, and FL and GL are the regular and irregular
Coulomb functions, respectively. Again, in the absence
of Coulomb interactions between the clusters, the
FL(h ,x)/x and GL(h ,x)/x should be replaced by the
regular and irregular spherical Bessel functions. The
sum over L8S8 is over all values compatible with a given
J and parity, while that over ` is over all permutations
[parity (21)`] of the nucleons between the two clusters,
thus ensuring that the wave function CA11A2


LSJJz is antisym-


metric. The factor 11dA1 ,A2
is included to correct for


the normalization of the wave function CA11A2


LSJJz when


the two clusters are identical (for example, two protons
or two deuterons). To date, wave functions CA11A2


LSJJz


have been obtained from realistic two- and three-
nucleon interactions for the trinucleons with Faddeev
and CHH methods (Kievsky, Viviani, and Rosati, 1994),
and for the A54 nucleon systems with the VMC
method (Carlson, Pandharipande, and Wiringa, 1984;
Carlson et al., 1990; Arriaga et al., 1991; Carlson et al.,
1991).


Cross-section and polarization observables are easily
obtained from the transition matrix elements
jMAM2M1


l (p,q). The unpolarized differential cross section
is written as (Viviani, Schiavilla, and Kievsky, 1996)
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su~u!5
1


~2J111 !~2J211 !
s0


3 (
lMAM2M1


ujMAM2M1


l ~p,q!u2, (9.7)


where the first factor comes from the average over the
initial-state polarizations, u is the angle between p and q
(the vectors p and q define the xz plane), and


s05
a


2pvrel


q


11q/mA
. (9.8)


Here mA is the rest mass of the final A-nucleon bound
state. The c.m. energy of the emitted g ray is given by


q5mAF211A11
2


mA
S Dm1


p2


2m D G , (9.9)


where m is A1 –A2 reduced mass, and Dm[m11m2
2mA , m1 and m2 are the rest masses of clusters A1 and
A2, respectively. The differential cross section s fi(u) for
a process in which an initial state with polarization de-
fined by the density matrix r i leads to a final polariza-
tion state with density matrix r f can be expressed as


s fi~u!52~2JA11 !s0


3 (
lMAM2M1


(
l8MA8 M28M18


@ jMAM2M1


l ~p,q!#


3~r i!M2M1 ,M28M18
@ jMA8 M28M18


l8 ~p,q!#*


3~r f!l8MA8 ,lMA
. (9.10)


The initial density matrix is given by the product of the
A1 and A2 density matrices, while the final density ma-
trix is the product of the g and A density matrices. The
density matrices of clusters with spins 1


2 and 1 (the only
ones of interest here) are given by


rM ,M8
[P]


5
1
2


@11s•P#M ,M8 , (9.11)


rM ,M8
[Plm]


5
1
3F(


lm
PlmtlmG


M ,M8


, (9.12)


with the matrices tlm defined as


tMM8
lm


5A3~21 !12M^1M8,12Mulm&. (9.13)


Here P and Plm are the polarizations of the spin-1
2 and


spin-1 clusters, respectively. For example, unpolarized
proton and deuteron beams have P50 and Plm


5dl0dm0. Finally, the density matrix for the photon is
written as


r
l ,l8


[P l ,Pc]
5


1
2


@dl ,l81P l dl ,2l81lPcdl ,l8# , (9.14)


where P l is the linear and Pc the circular g polarization.
Note that P l 5Py –Px ; that is, P l is defined as the dif-
ference between the g polarizations out of and in the
scattering plane (the xz plane).
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The initial- and final-state polarizations are defined by
assigning the quantities P, Plm, P l and Pc . With the
density matrices given in Eqs. (9.11), (9.12), and (9.14),
polarization observables are then obtained from differ-
ences of cross sections:


s fi~u![s~u ;P,Plm,P l ,Pc!. (9.15)


For example, the proton and deuteron vector and tensor
analyzing powers Ay(u) and T20(u) in the reactions
2H(pW ,g)3He and 1H(dW ,g)3He are given, respectively,
by


su~u!Ay~u!5
1
2


@s~u ;P5 ŷ,dl0dm0,0,0 !


2s~u ;P52 ŷ,dl0dm0,0,0 !# , (9.16)


su~u!T20~u!5
1
2


@s~u ;0,1dl2dm0,0,0 !


2s~u ;0,2dl2dm0,0,0 !# . (9.17)


Expressions for more complicated double-polarization
observables are obtained in similar fashion. Another
case of interest is the detection of the photon linear po-
larization coefficient Pg(u), defined as


su~u!Pg~u!5
1
2


@s uu~u!2s'~u!# , (9.18)


where


s uu~u!5s~u ;0,dl0dm0 ,P l 521,0!, (9.19)


s'~u!5s~u ;0,dl0dm0 ,P l 51,0!. (9.20)


Here s uu(u) „s'(u)… corresponds to a capture cross sec-
tion in which an unpolarized initial state leads to emis-
sion of a photon with linear polarization parallel (per-
pendicular) to the reaction plane. The observation of
circular polarization PG(u),


su~u!PG~u!5
1
2


@s~u ;P,dl0dm0,0,Pc51 !


2s~u ;P,dl0dm0,0,Pc521 !# , (9.21)


requires the polarization of the initial proton (or neu-
tron) beam. If the process is dominated by S-wave cap-
ture, as is the case for the 2H(nW ,gW )3H reaction at
thermal-neutron energies, then PG(u) is simply given by


PG~u!5RcP•q̂ ~S-wave capture only! , (9.22)


where Rc is the so-called polarization parameter.
The expansion of the transition matrix element


jMAM2M1


l (p,q) in terms of electric and magnetic multi-
poles is easily obtained from that given in Eq. (6.14):
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jMAM2M1


l ~p,q!


52A 8p2


~2JA11 ! (
LSJJzl l z


A~2L11 !~2l 11 !iL~2i! l


3^J1M1 ,J2M2uSJz&^SJz ,L0uJJz&


3^JJz ,l l zuJAMA&D l z ,2l
l ~0u0 !@lT l


Mag~q ;LSJ !


1T l
El~q ;LSJ !# , (9.23)


where D l z ,2l
l are standard rotation matrices (Messiah,


1961). The angle u is defined as that between the p di-
rection (which is also taken as the quantization axis of
the initial and final nuclear spins) and the q direction.


By evaluating the sums in Eqs. (9.7) and (9.10) and
using the product property of the D matrices, one can
make explicit the angular dependence of the unpolar-
ized cross section as well as that of polarization observ-
ables. For example, the vector and tensor analyzing
powers and photon linear coefficient can be expressed as
(Seyler and Weller, 1979)


su~u!5 (
m>0


amPm~cosu!, (9.24)


su~u!Ay~u!5 (
m>1


bmPm
1 ~cosu!, (9.25)


su~u!T20~u!5 (
m>0


cmPm~cosu!, (9.26)


su~u!Pg~u!5 (
m>2


dmPm
2 ~cosu!, (9.27)


where Pm (Pm
k ) are Legendre polynomials (associated


Legendre functions) and the coefficients am , bm , cm ,
and dm denote appropriate combinations of electric and
magnetic multipoles.


The weak-capture total cross section can simply be
written, in the notation introduced above, as (Carlson,
Pandharipande, and Schiavilla, 1991)


sT~Ec.m.!5
4


~2p!3


GV
2 me


5


vrel


1


~2J111 !~2J211 !
f~Ec.m.!


3 (
MAM2M1


u^CA
JAMAuAa~q50 !uCp,M2M1


~1 ! &u2,


(9.28)


f~Ec.m.![
1


me
5E d~Ec.m.1Dm2En2Ee!peEeEn


2dEedEn


5E
1


~Ec.m.1Dm !/me
dx xAx221S Ec.m.1Dm


me
2x D 2


.


(9.29)


Here GV is the vector coupling constant (GV51.151
31025 GeV22), Aa (a is an isospin index) is the nuclear
axial current operator, and Ec.m.5p2/2m is the c.m. inci-
dent energy. The energy of the recoiling A-nucleon
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bound state has been neglected, since incident energies
are of the order of a few keV, that is, the energy range
of relevance for the solar-burning reactions
1H(p ,e1ne)2H and 3He(p ,e1ne)4He, which we shall
discuss below. These processes are induced by the axial-
vector (or Gamow-Teller) part of the weak-interaction
Hamiltonian. Note that the dependence of Aa upon the
momentum transfer q52pe2pn , where pe and pn are
the outgoing lepton momenta, is ignored, again because
of the very low energies involved. A more refined treat-
ment of the phase-space factor f(Ec.m.) (the ‘‘Fermi
function’’) includes the effect of the nuclear Coulomb
potential due to the final A cluster, as well as its screen-
ing by atomic electrons, by multiplying the integrand in
Eq. (9.29) by the ratio of the (relativistic) electron den-
sity at the nucleus to the density at infinity (Bahcall,
1966). These corrections are in fact very small for the
reactions to be considered below.


Finally, for those reactions in which both clusters A1
and A2 carry charge, it is convenient to define the so-
called astrophysical factor via


sT~Ec.m.!5
S~Ec.m.!


Ec.m.
e22ph, (9.30)


where sT(Ec.m.) is the total cross section for the process
under consideration. The term exp(22ph) is the
Gamow penetration factor, proportional to the probabil-
ity that two particles with charges Z1 and Z2 moving
with relative velocity vrel will penetrate their electro-
static repulsion. The factor 1/Ec.m. is essentially the geo-
metrical factor l2, l being the de Broglie wavelength
}1/prel}1/AEc.m.. In this way, the strongly energy-
dependent terms are explicitly factored out of sT(Ec.m.),
and the residual function S(Ec.m.) is expected to be, at
least for reactions that do not proceed through low-
energy resonant states, weakly dependent on Ec.m.
(Clayton, 1983). In this situation, the measured astro-
physical factor can be safely extrapolated to energies
typical of the stellar interior, tens of keV or less, in
which range direct measurements are often not possible.


In fact, it is interesting to investigate the energy de-
pendence of the total cross section for radiative capture
in a little more detail. In the naive direct-capture model
(Christy and Duck, 1961; Bailey et al., 1967; Rolfs, 1973;
Lafferty and Cotanch, 1982), the total cross section for
L-wave capture can be simply written as


sT
~L !~Ec.m.!5a ~L !


1


AEc.m.


~Dm1Ec.m.!
2l 11UFL~r!


r U2


,


(9.31)


where a(L) is an energy-independent constant, the fac-
tors 1/AEc.m. and (Dm1Ec.m.)


2l 11 are, respectively,
from 1/vrel and from the energy and multipolarity l of
the emitted photon, and uFL(r)/ru2 is approximately the
probability that clusters A1 and A2 approach to within
some interaction radius R (r[prelR5A2mEc.m.R). At
very low energies, h@r , and the Coulomb wave func-
tion FL evaluated at r can be approximated as
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FL~r!


r
.dL


CL~h!


hL
, (9.32)


CL~h!5
AL21h2


L~2L11 !
CL21~h!,


C0~h!5A 2ph


e2ph21
, (9.33)


where dL is a constant independent of energy. If no
Coulomb repulsion is present in the initial channel, then
the factor uFL(r)/ru2 should be replaced by ujL(r)u2,
which shows that in this case the low-energy capture in
L waves >1 is inhibited by the centrifugal barrier. How-
ever, such a suppression mechanism is not as effective
when the Coulomb repulsion is present. In particular,
since h}1/AEc.m., the direct-capture model would pre-
dict, on the basis of Eqs. (9.31) and (9.32), a linear be-
havior for S(Ec.m.), when S- and P-wave capture are
both important.


B. The A52 capture reactions


1. The 1H(n,g)2H radiative capture


Historically, the radiative capture of thermal neutrons
on protons has played a crucial role in establishing the
quantitative importance of two-body current effects in
photonuclear observables (Riska and Brown, 1972).
Their inclusion resolves the long-standing 10% discrep-
ancy between the calculated IA cross section and its
measured value. We shall discuss it here for the sake of
completeness.


At thermal energies, the 1H(n ,g)2H capture pro-
ceeds entirely through the 1S0 scattering state. Its cross
section is related to that for threshold electrodisintegra-
tion of the deuteron, since the required matrix elements
are connected to each other by time reversal. It has been
most recently calculated with wave functions and cur-
rents corresponding to the Argonne v14 interaction
(Schiavilla and Riska, 1991). The values for (successive)
contributions to the cross section from the different
components of the current operator are listed in Table
XV. The calculated IA and total cross-section values are
304.1 mb and 331.4 mb, respectively. The latter is less
than 1% below the empirical value (334.260.5) mb
(Cox, Wynchank, and Collie, 1965) and should thus be
viewed as satisfactory. Note that the Argonne v14 model
predicts singlet np scattering length and effective ranges
of 223.67 fm and 2.77 fm, respectively, in good agree-
ment with the corresponding experimental values
(223.74960.008) fm and (2.8160.05) fm (Koester and
Nistler, 1975).


The two-body currents associated with D components
are included perturbatively (see Sec. V). Their contribu-
tion is considerably smaller than that found in the origi-
nal evaluation of them, which was also based on pertur-
bation theory (Riska and Brown, 1972). This smaller
contribution occurs for two reasons. First, the measured
transition moment, in place of its static quark-model
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prediction, is used here at the gND vertex (the former is
about 30% smaller than the latter). Second, short-range
cutoff parameters are included at the pNN and pND
vertices in the present treatment; these were neglected
in the original work (Riska and Brown, 1972).


2. The 1H(p,e1ne)2H weak capture


The proton weak capture on protons is the most fun-
damental process in stellar nucleosynthesis: it is the first
reaction in the p-p chain, which converts hydrogen into
helium, and the principal source for the production of
energy and neutrinos in stars like the sun (Clayton, 1983;
Bahcall and Ulrich, 1988). The theoretical description of
this hydrogen-burning reaction, whose cross section—it
is important to realize—cannot be measured in the labo-
ratory, was first given by Bethe and Critchfield (1938),
who showed that the associated rate was large enough to
account for the energy released by the sun. Since then, a
series of calculations have refined their original estimate
by using more precise values for the nucleon axial cou-
pling and by computing the required nuclear matrix el-
ements more accurately (Bahcall and May, 1968; Gari
and Huffman, 1972; Dautry, Rho, and Rska, 1976;
Gould and Guessoum, 1990; Carlson et al., 1991).


Although the neutrinos from the p-p reaction are not
energetic enough to have been detected in either the
Davis (1994) or Kamiokande (Hirata et al., 1989) experi-
ments, the precise value for its cross section affects the
flux due to higher-energy neutrinos, in particular those
from the decay 8B(e1ne)8Be, to which both the above
experiments were sensitive. The reason for this lies in
the following fact: Since the solar total luminosity and
mass are known quantities, changing the pp cross sec-
tion requires a modification in the solar-core density,
radius, and temperature which, in turn, influences the
computed rate for the production of 8B in the p-p chain
and associated neutrino flux. In particular, it has been
shown by Bahcall, Bahcall, and Ulrich (1969) that the


TABLE XV. The 1H(n ,g)2H cross section at thermal-
neutron energies obtained with one-body currents in the im-
pulse approximation (IA), and with inclusion of the two-body
currents associated with, respectively, the leading model-
independent terms due to p-like exchange (pseudoscalar PS),
all model-independent terms from the Argonne v14 model
(MI), vpg mechanism (vpg), and perturbative D compo-
nents (DPT). The different contributions are added succes-
sively in the order stated above.


sT (mb)


IA 304.1
IA1PS 322.7
IA1MI 326.9
IA1MI1vpg 328.2
IA1•••1DPT 331.4
Expt. 334.260.5a


aCox, Wynchank, and Collie, 1965.
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TABLE XVI. The 1H(p ,e1ne)2H cross sections at Ec.m.51, 2.5, and 5 keV obtained from the
Argonne v14 model with one-body axial currents in the impulse approximation (IA) and with inclu-
sion of the two-body axial currents associated with, respectively, p- and r-meson seagull terms, the
rp mechanism (mesonic), and perturbative D components (DPT). The different contributions are
added successively in the order stated above.


s(Ec.m.51 keV) s(Ec.m.52.5 keV) s(Ec.m.55 keV)
10230 fm 2 10226 fm 2 10225 fm 2


IA 9.054 1.291 4.061
IA1mesonic 9.086 1.295 4.075
IA1•••1DPT 9.188 1.310 4.121

neutrino counting rate in the Davis experiment was pro-
portional to (sT)22.5, where sT is the p-p weak-capture
cross section.


The total cross section for the proton weak capture on
1H is easily obtained from Eq. (9.28) by considering the
charge-lowering component of the axial current opera-
tor. The (dimensionless) Fermi function, including the
correction for Coulomb focusing in the wave function of
the emitted e1, is parametrized as f(Ec.m.)50.142[1
19.04Ec.m.(MeV)] (Bahcall and May, 1968).


Because of parity selection rules, only even L in the
partial-wave expansion of the pp scattering state have a
nonvanishing matrix element. Moreover, in the keV en-
ergy range, the contribution associated with L>2 is
found to be completely negligible. The expression for
the transition matrix element is particularly simple in
the IA; it is given by


E
0


`


dr u~r !u ~1 !~r ;Ec.m. ,
1S0!, (9.34)


where u(r) and u(1)(r ;Ec.m. ,
1S0) are, respectively, the


S-wave component of the deuteron and 1S0 scattering-
state radial wave functions. The value of this expression
is therefore sensitive to the pp scattering length.


The most recent and complete calculations have been
based on the Argonne v14 interaction (Carlson et al.,
1991), in which, however, the central T ,S51,0 compo-
nent has been slightly modified so as to reproduce the
experimental pp scattering length (–7.82360.01) fm
(Bergervoet et al., 1988) when the Coulomb repulsion is
taken into account (the v14 interaction was originally fit-
ted to np data only). The resulting value for the effec-
tive range parameter of 2.771 fm is also reasonably close
to the experimental value (2.79460.015) fm (Berger-
voet et al., 1988).


As is evident from Table XVI, the two-body axial cur-
rent operators lead to an increase of only 1.5% in the
cross-section value predicted in the IA. The relative un-
importance of these corrections has already been
pointed out by Gari and Huffman (1972) and Dautry,
Rho, and Riska (1976). The leading two-body contribu-
tions arising from D degrees of freedom are included
perturbatively. The value used for the transition axial
coupling gbND is taken from the naive quark model;
however, the short-range cutoff in the transition pND
coupling is determined by fitting the Gamow-Teller ma-
trix element of tritium b decay (Carlson et al., 1991).
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Finally, the values S(Ec.m.50)54.00310225 MeV-b
and dS(Ec.m.)/dEc.m.uEc.m.5054.67310224 b are obtained
from the results listed in Table XVI, which are close to
the ‘‘standard’’ values S(Ec.m.50)54.07 (160.051)310
225 MeV-b and dS(Ec.m.)/dEc.m.uEc.m.5054.52310224 b
quoted by Bahcall and Ulrich (1988).


C. The A53 radiative-capture reactions


The low-energy three-body reactions we consider in
this subsection are particularly important, since recent
advances in numerical methods now make it possible to
calculate bound and continuum (both dn and dp) wave
functions very accurately. Thus the comparison with ex-
perimental data, which by now are quite extensive and
include not only total cross sections but also spin observ-
ables, is not hindered by uncertainties in the many-body
theory.


1. The 2H(n,g)3H radiative capture


The cross section for thermal-neutron radiative cap-
ture on deuterium was most recently measured to be
sT50.50860.015 mb (Jurney, Bendt, and Browne,
1982), in agreement with the results of earlier experi-
ments (Kaplan, Ringo, and Wilzbach, 1952; Merritt,
Taylor, and Boyd, 1968). In the late eighties, measure-
ments of both the photon polarization following polar-
ized neutron capture (Konijnenberg et al., 1988) and g
emission after polarized neutron capture from polarized
deuterons (Konijnenberg, 1990) were also carried out.


The theory of the 2H(n ,g)3H capture reaction has a
long history. The ‘‘pseudo-orthogonality’’ between the
3H ground state and nd doublet or quartet state inhib-
iting the T1


Mag transition in IA for this process [and thus
explaining the smallness of its cross section when com-
pared to that for the 1H(n ,g)2H reaction,
sT5334.560.5 mb] was first pointed out by Schiff
(1937). Later, Phillips (1972) emphasized the impor-
tance of initial-state interactions and two-body currents
to the capture reaction in a three-body model calcula-
tion by considering a central, separable interaction. In
more recent years, a series of calculations of increasing
sophistication with respect to the description of both the
initial- and final-state wave functions and two-body cur-
rent model were carried out (Hadjimichael, 1973; Torre
and Goulard, 1983). These efforts culminated in Friar
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et al.’s calculation (Friar, Gibson, and Payne, 1990) of
the 2H(n ,g)3H total cross section, quartet capture frac-
tion, and photon polarization. The calculation was based
on converged bound- and continuum-state Faddeev
wave functions, which corresponded to a variety of real-
istic Hamiltonian models with two- and three-nucleon
interactions, as well as a nuclear electromagnetic current
operator, including the long-range two-body compo-
nents associated with pion exchange and the virtual ex-
citation of intermediate D resonances. Within this
framework, Friar Gibson, and Payne clearly showed the
importance of initial-state interactions and two-body
current contributions. They also showed that both the
calculated cross section and the photon polarization pa-
rameter could be in good quantitative agreement with
the experimental values, if the cutoff Lp at the pNN
vertices in the two-body currents was taken in the range
1050 MeV<Lp<1200 MeV, depending on the particu-
lar combination of two- and three-body interactions con-
sidered (see Figs. 52 and 53).


More recently, CHH wave functions obtained from
either the Argonne v14 two-nucleon (Wiringa, Smith,
and Ainsworth, 1984) and Urbana VIII three-nucleon
(Wiringa, 1991) interactions (AV14/VIII), or the Ar-
gonne v18 two-nucleon (Wiringa, Stoks, and Schiavilla,
1995) and Urbana IX three-nucleon (Pudliner et al.,
1995) interactions (AV18/IX), and including D admix-
tures, were also used to study this reaction (Viviani,
Schiavilla, and Kievsky, 1996). The nuclear electromag-
netic current in these calculations consists of one- and
two-body components, the latter constructed with the
(current-conserving) Riska prescription. The low-energy


FIG. 52. The thermal nd radiative capture cross sections as a
function of the triton binding energy: s , results obtained from
a Hamiltonian based on the Reid soft-core two-nucleon inter-
action with and without the inclusion of the Tucson-
Melbourne (Brasil) three-nucleon interaction; h , results from
a Hamiltonian based on the Argonne v14 two-nucleon interac-
tion. Solid symbols denote 34-channel bound states. Results
are also shown corresponding to 5, 9, and 18 channels. The
pion-nucleon form-factor cutoff in the two-body currents is L
(in units of mp). The experimental value is from Jurney,
Bendt, and Browne (1982).
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scattering parameters obtained with the CHH d1N
wave functions corresponding to the AV14/VIII model
are in excellent agreement with the Faddeev results
(Hüber et al., 1995).


At thermal energies, the reaction proceeds through
S-wave capture predominantly via magnetic dipole tran-
sitions T1


Mag(0 1
2


1
2 ) and T1


Mag(0 3
2


3
2 ) from the initial dou-


blet J5 1
2 and quartet J5 3


2 nd scattering states (the no-
tation for the multipole operator reduced matrix
elements is that introduced in Sec. IX.A). In addition,
there is a small contribution due to an electric quadru-
pole transition T2


El(0 3
2


3
2 ) from the initial quartet state.


The results for the cross section and photon polariza-
tion parameter, obtained with the AV14/VIII and
AV18/IX Hamiltonian models, are listed in Table XVII,
along with the experimental data (see table for nota-
tion). The cross section in the impulse approximation is
calculated to be approximately a factor of 2 smaller than
the measured value, while the IA1•••1D calculations
based on the AV14/VIII and AV18/IX Hamiltonians
overestimate the experimental value by 18% and 14%,
respectively. It should be noted, however, that the com-
mon perturbative treatment of D-isobar degrees of free-
dom (row labeled IA1•••1DPT) leads to a significant
increase in the discrepancy between theory and experi-
ment (Viviani, Schiavilla, and Kievsky, 1996).


The photon polarization parameter is very sensitive to
two-body currents, as can be seen from Table XVII and
Fig. 53. More interesting is its sensitivity to the small E2
reduced matrix element, particularly for the AV14/VIII
Hamiltonian. In S-wave capture this matrix element is
predominantly due to transitions S(2H)→ D(3H) and D
(2H)→ S(3H), where S and D denote S- and D-wave
components in the bound-state wave functions. In the
case of the AV18/IX Hamiltonian, the contributions as-
sociated with these transitions interfere destructively,
thus producing a small E2 reduced matrix element; in
contrast, for the AV14/VIII Hamiltonian, the interfer-
ence between these contributions is constructive. Thus


FIG. 53. The photon polarization parameter Rc in thermal nW d
radiative capture. Notation as in Fig. 52. The experimental
value is from Konijnenberg et al. (1988).
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TABLE XVII. Cumulative contributions to the cross section (in mb) and photon polarization parameter Rc of the reaction
2H(n ,g)3H at thermal energies calculated with the Argonne v14 two-nucleon and Urbana VIII three-nucleon (AV14/VIII) and
Argonne v18 two-nucleon and Urbana IX three-nucleon (AV18/IX) Hamiltonian models. Results obtained with one-body currents
in the impulse approximation (IA), and with inclusion of the two-body currents associated with, respectively, the leading model-
independent terms due to p-like exchange (pseudoscalar, PS), all model-independent terms from the interaction models Argonne
v14 or Argonne v18 (MI), the rpg and vpg mechanisms (model-dependent, MD), and D components treated either perturbatively
(DPT) or nonperturbatively (D) with the transition-correlation-operator (TCO) method, are listed. Rc(M1) was calculated without
inclusion of the electric quadrupole contribution, while Rc(M11E2) was calculated with it.


sT Rc(M1) Rc(M11E2)
AV14/VIII AV18/IX AV14/VIII AV18/IX AV14/VIII AV18/IX


IA 0.225 0.229 20.089 20.083 0.029 20.068
IA1PS 0.409 0.383 20.422 20.397 20.345 20.385
IA1MI 0.502 0.481 20.460 20.446 20.389 20.437
IA1MI1MD 0.509 0.489 20.464 20.452 20.394 20.442
IA1•••1DPT 0.658 0.631 20.492 20.487 20.430 20.478
IA1•••1D 0.600 0.578 20.485 20.477 20.420 20.469
Expt. 0.50860.015a 20.4260.03b


aJurney, Bendt, and Browne, 1982.
bKonijnenberg et al., 1988.

the E2 reduced matrix element appears to be very sen-
sitive to the D-state content of the two- and three-
nucleon bound-state wave functions and to the strength
of the tensor force, as reflected in the large difference
between the AV14/VIII and AV18/IX predictions. It is
unfortunate that, due to the large two-body current con-
tributions affecting the photon polarization parameter,
the sensitivity displayed by this observable to the E2
reduced matrix element cannot be exploited to gain in-
formation on the tensor interaction (Viviani, Schiavilla,
and Kievsky, 1996).


Finally, we note that the AV14/VIII prediction for the
cross section in the approximation IA1PS1DPT is 0.545
mb. This result is about 15% smaller than that reported
by Friar and collaborators (Friar, Gibson, and Payne,
1990) for the same Hamiltonian. The difference is
mostly due to the different value used for the N→D
transition magnetic moment: Viviani, Schiavilla, and
Kievsky (1996) take mgND53mN , while Friar et al. used
mgND53A2/5mV from the quark model, mV54.706mN
being the nucleon isovector magnetic moment. Indeed,
if the latter value is used for mgND , the CHH result
becomes 0.630 mb, in much better agreement with that
reported by Friar et al. As a last remark, we note that
the Rc parameter, obtained in the IA1PS1DPT ap-
proximation by only including the M1 reduced matrix
element, is calculated to be –0.49, again in excellent
agreement with the value obtained by Friar et al.


2. The 2H(p,g)3He radiative capture


In an experiment performed in 1995 at TUNL
(Schmid et al., 1995, 1996), the total cross section and,
for the first time, vector and tensor analyzing powers of
the 2H(pW ,g)3He and 1H(dW ,g)3He reactions were mea-
sured at center-of-mass energies below 55 keV. The as-
trophysical S factor, extrapolated to zero energy from
the cross-section data, was found to be S(Ec.m.50)

Rev. Mod. Phys., Vol. 70, No. 3, July 1998

50.16560.014 eV b, where the error includes both sys-
tematic and statistical uncertainties (Schmid et al., 1996).
This value for S(0) is about 35% smaller than that ob-
tained by Griffiths et al. (Griffiths, Lal, and Scarfe, 1963)
more than thirty years ago, the only other experimental
determination of S(0). More recently, in another ex-
periment performed at TUNL, a different group (Ma
et al., 1996) has extended the study of the 2H(pW ,g)3He
and 1H(dW ,g)3He reactions to center-of-mass energies
between 75 and 300 keV.


The radiative capture of protons on deuterons is the
second reaction occurring in the pp chain, but its effect
on the energy (and neutrino) production of stars is neg-
ligible, since its rate is controlled by the much slower pp
weak-capture rate preceding it. However, the
2H(p ,g)3He reaction plays a more prominent role in
the evolution of protostars. As a cloud of interstellar gas
collapses on itself, it begins to heat up, igniting, as its
temperature reaches about 10 6 °K, the 2H(p ,g)3He re-
action. Deuterium burning via this reaction, which oc-
curs first in the protostellar gas, plays the role of a ther-
mostat in low-mass protostars, and maintains the
temperature of the core at about 106 °K (Stahler, 1988).
This puts tight constraints on the mass-radius relation of
the protostar core and affects calculations of the ‘‘stellar
birthline’’—the sites on the H-R diagram where stars
first become luminous. It also impacts the depletion of
(primordial, in this case) deuterium. Of course, the pre-
cise value for the S factor of the 2H(p ,g)3He reaction is
essential to provide quantitative estimates for these phe-
nomena.


The observed linear dependence upon the energy of
the S-factor as well as the observed angular distributions
of the cross section and polarization observables indi-
cate that the 2H(p ,g)3He reaction proceeds predomi-
nantly through S- and P-wave capture (Ma et al., 1996;
Schmid et al., 1996). Such S- and P-wave capture pro-







816 J. Carlson and R. Schiavilla: Structure and dynamics of few-nucleon systems

cesses have been theoretically studied, at very low ener-
gies, only in the past few years, with converged Faddeev
and CHH wave functions obtained from realistic inter-
actions that include Coulomb distortion effects in the
initial channel (Friar et al., 1991; Viviani, Schiavilla, and
Kievsky, 1996).


The predicted S factor and angular distributions of
the differential cross section su(u), and vector and ten-
sor analyzing powers Ay(u) and T20(u), are compared
with the experimental data (Ma et al., 1996; Schmid
et al., 1996) in Figs. 54–57. The results shown corre-
spond to calculations based on the AV18/IX Hamil-
tonian and CHH wave functions (Viviani, Schiavilla, and
Kievsky, 1996). Faddeev wave functions have only been
used to calculate the zero-energy S-wave contribution to
the S factor (Friar et al., 1991).


The dominant contributions are those due to electric
and magnetic dipole transitions between the initial dou-


FIG. 54. The S factor of the 2H(p ,g)3He reaction, obtained
with the Argonne v18 two-nucleon and Urbana IX three-
nucleon Hamiltonian model in the impulse approximation
(IA) and with inclusion of two-body currents and D-isobar ad-
mixtures in the nuclear wave functions (TOT), compared with
experimental results from Griffiths, Lal, and Scarfe (1963),
Schmid et al. (1996), and Ma et al. (1996).
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blet or quartet scattering states and the final 3He bound
state. The transitions induced by electric and magnetic
quadrupole operators have a much weaker strength. The
calculated S- and P-wave capture contributions to the
zero-energy S factor are compared with the most recent
experimental determinations (Schmid et al., 1996) in
Table XVIII (see table for notation). The SS(Ec.m.50) is
found to be 0.105 eV b (Viviani, Schiavilla, and Kievsky,
1996), in good agreement with experiment, SS


exp(Ec.m.


50)50.10960.01 eV b (Schmid et al., 1996) and with
the value reported by Friar et al. (1991), 0.108 eV b.
However, the experimental P-wave S factor, SP


exp(Ec.m.
50)50.07360.007 eV b, is 15 (10)% smaller than cal-
culated with the AV18/IX (AV14/VIII) Hamiltonian.


Results for the S factor in the energy range
Ep50 –150 keV (Ec.m.50 –100 keV) are shown in Fig.
54, where they are compared with the recent TUNL
data (Ma et al., 1996; Schmid et al., 1996) and the much
older data of Griffiths, Lal, and Scarfe (1963). Both the
absolute values and the energy dependence of the
TUNL data are well reproduced by the IA1•••1D cal-
culation. The enhancement due to two-body current and
D-isobar contributions is substantial: the ratios @S(IA1
•••1D) –S(IA)]/S(IA) for the S- and P-wave S factors
are found to be, respectively, 0.62 and 0.18 at 0 keV and
increase to 0.75 and 0.22 at Ep5150 keV. The Griffiths
et al. data have large errors and appear to be at variance
with the TUNL data.


The measured angular distributions of the energy-
integrated cross section, vector and tensor analyzing
powers, and photon linear polarization (Schmid et al.,
1996) are compared with theory (Viviani, Schiavilla and
Kievsky, 1996) in Figs. 55–57. Note that, since the en-
ergy binning of the data would substantially increase the
statistical errors, the theoretical calculations, weighted
by the energy dependence of the cross section and the
target thickness, have been integrated for the purpose of
comparing them with experiment (Rice, Schmid, and
Weller, 1996). The energy dependence of these observ-
ables is, in any case, rather weak.


The overall agreement between theory and experi-
ment is satisfactory for all observables with the excep-
tion of Ay(u). The latter is particularly sensitive to two-

TABLE XVIII. Cumulative contributions in eV b to the S- and P-wave capture zero-energy S factor of the reaction 2H(p ,g)3He
calculated with the Argonne v14 two-nucleon and Urbana VIII three-nucleon (AV14/VIII) and Argonne v18 two-nucleon and
Urbana IX three-nucleon (AV18/IX) Hamiltonian models. Notation is same as in Table XVII.


SS SP


AV14/VIII AV18/IX AV14/VIII AV18/IX


IA 0.0605 0.0647 0.0650 0.0731
IA1PS 0.0880 0.0900 0.0794 0.0876
IA1MI 0.0939 0.0943 0.0822 0.0900
IA1MI1MD 0.0971 0.0972 0.0824 0.0901
IA1•••1DPT 0.117 0.117 0.0824 0.0901
IA1•••1D 0.105 0.105 0.0800 0.0865
Expt. 0.10960.01a 0.07360.007a


aSchmidt et al., 1996.
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body current contributions, whose effect is to reduce the
results obtained in the IA by about a factor of 3, bring-
ing them into better agreement with the data. However,
an approximate 30% discrepancy between the predicted
and measured Ay remains unresolved. It is important to
recall here that these observables, unlike thermal cross


FIG. 55. The energy-integrated relative cross sections, s(u)/a0
where (4pa0 is the total cross section), obtained with the Ar-
gonne v18 two-nucleon and Urbana IX three-nucleon Hamil-
tonian model in the impulse approximation (IA) and with in-
clusion of two-body currents and D-isobar admixtures in the
nuclear wave functions (TOT), are compared with experimen-
tal results from Schmid et al. (1996). Note that this plot only
shows data with Ep50 –40 keV (Ec.m.50 –27 keV). This is
done to allow the (d ,g) data with Ed50 –80 keV (Ec.m.50 –27
keV) and the (p ,g) data to be shown in the same graph [with
the (d ,g) data reflected].


FIG. 56. The energy-integrated vector analyzing powers of the
2H(pW ,g)3He reaction, obtained with the Argonne v18 two-
nucleon and Urbana IX three-nucleon Hamiltonian model in
the impulse approximation (IA) and with inclusion of two-
body currents and D-isobar admixtures in the nuclear wave
functions (TOT), compared with experimental results from
Schmid et al. (1996).
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sections, are independent of normalization issues in both
theory and experiment. The origin of this discrepancy is,
at present, unclear, but perhaps suggests an incomplete
dynamic picture of the process.


D. The A54 capture reactions


While the four-nucleon bound-state problem can
nowadays be solved very accurately with a variety of
different techniques and realistic interactions (see Secs.
III and IV), solutions for the four-nucleon continuum
problem, even at low excitation energies, have only been
attempted with the variational Monte Carlo (VMC)
method (Carlson, Pandharipande, and Wiringa, 1984;
Carlson et al., 1990; Arriaga et al., 1991; Carlson et al.,
1991). It is expected that Faddeev-Yakubovsky, CHH,
and GFMC A54 scattering-state wave functions of
quality comparable to those for the A53 systems will
become available in the next few years.


In this section, the focus is on the weak-capture
3He(p ,e1ne)4He and radiative captures 3He(n ,g)4He
and 2H(d ,g)4He. The thermal-neutron and keV proton
captures on 3He involve a transition from a 3S1 scatter-
ing state to the Jp501 4He ground state. As already
pointed out, the matrix element of the one-body (elec-
tromagnetic or Gamow-Teller) operator between the
dominant S-state components of the 3He and 4He
bound states vanishes (Austern, 1951). Thus these reac-
tions in the IA proceed through the small components of
the wave functions—the S8 mixed-symmetry states. For
this reason, they are sensitive to models for the wave
functions and two-body electroweak operators (for
which the S→S transition is not inhibited).


FIG. 57. The energy-integrated tensor analyzing powers of the
1H(dW ,g)3He reaction, obtained with the Argonne v18 two-
nucleon and Urbana IX three-nucleon Hamiltonian model in
the impulse approximation (IA) and with inclusion of two-
body currents and D-isobar admixtures in the nuclear wave
functions (TOT), compared with experimental results from
Schmid et al. (1996).
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Even more interesting is the dd fusion. Below 100
keV, the experimental data on the S factor suggest that
the relevant orbital angular momentum between the dd
clusters is L50 (S wave) (Wilkinson and Cecil, 1985;
Barnes et al., 1987). As a consequence, because of the
bosonic character of the two d clusters, only even
channel-spin S values are allowed (S50 or 2). Since
01→01 electromagnetic transitions with emission (or
absorption) of a single photon are prohibited, it follows
that the only allowed entrance channel is 5S2, and the
transition to the 4He ground state has T2


El character. In
the long-wavelength approximation, the T2


El operator
does not involve the nucleons’ spin variables (it is pro-
portional to the charge quadrupole operator), and there-
fore it can only connect the S52 component of the 4He
ground state, namely its D-wave orbital part. Note that
the dominant two-body currents have isovector charac-
ter, and will not contribute to this T50 → T50 transi-
tion. Furthermore, the less important isoscalar two-body
currents associated, for example, with the momentum
dependence of the two-nucleon interaction, are taken
into account anyway in the long-wavelength approxima-
tion via Siegert’s theorem. Thus the radiative fusion of
two deuterons can, at low energies, provide information
on the 4He (and 2H) D-state components and, indi-
rectly, on the tensor force which induces these compo-
nents.


The above discussion should make clear that the A
54 reactions under consideration here put exceptional
demands on the quality of models for the bound- and
scattering-state wave functions and two-body elec-
troweak operators.


1. The radiative 3He(n,g)4He and weak
3He(p,e1ne)4He captures


Most of the calculations of the 3He(n ,g)4He and
3He(p ,e1ne)4He cross sections have been based on
shell-model descriptions of the initial- and final-state
nuclear wave functions and simple meson-exchange
models for the two-body components in the electroweak
current operator [essentially the Chemtob and Rho
(1971) prescription with some short-range modification].
These calculations have led to contradictory results. For
example, in the radiative-capture reaction, Towner and
Khanna (1981) have found that the cross section is
dominated by exchange current contributions, whereas
Tegnér and Bargholtz (1983) and, more recently,
Wervelman et al. (1991) have found that these contribu-
tions provide only a small correction to the cross-section
value obtained in the impulse approximation. Further-
more, large differences exist even between the IA val-
ues: Towner and Khanna quote results ranging from 2 to
14 mb, depending on whether harmonic-oscillator or ex-
ponential wave functions are used to describe the 3He
and 4He ground states. However, Wervelman et al.
quote an IA cross section of 50 mb. These discrepancies
are presumably due to the schematic wave-function
models used in these calculations and reiterate the need
for a description of these reactions based on realistic
wave functions.
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More recently, VMC calculations based on the the
AV14/VIII Hamiltonian model have been carried out
(Carlson et al., 1990; Schiavilla et al., 1992). The Monte
Carlo approach to the low-energy continuum was re-
viewed briefly in Sec. VIII.C. In essence, it converts the
scattering problem, in which the asymptotic behavior of
the wave function (phase shift) is to be determined for a
given energy, into a bound-state problem within a finite
volume, in which the energy corresponding to a pre-
scribed boundary condition (and, therefore, phase shift)
of the wave function on the surface of this volume is
determined. The energy is determined variationally in
VMC, but the method becomes exact if Faddeev or
GFMC techniques are used to solve the bound-state
problem in the finite volume. However, except for the
GFMC studies of P-wave resonances in the n1 4He sys-
tem (Carlson and Schiavilla, 1994a), to date only VMC
calculations have been attempted. These have been used
to study the low-energy resonances in 4He (Carlson,
Pandharipande, and Wiringa, 1984), as well as the low-
energy N13He 3S1 (Carlson et al., 1990) and d1d 5S2
(Arriaga et al., 1991; to be described below) scattering-
state wave functions. The p13He and n13He scattering
lengths are found to be (10.160.5) fm (Carlson et al.,
1991) and (3.5060.25) fm (Carlson et al., 1990), respec-
tively. These are quite close to the values of (10.261.4)
fm (Tombrello, 1965; Berg et al., 1980; Tégner and Barg-
holtz, 1983) and (3.5260.25) fm (Kaiser et al., 1977) ob-
tained from effective range parametrizations of p13He
and n13He scattering data at low energies. The uncer-
tainties in the calculated values are due to statistical er-
rors associated with the Monte Carlo integration tech-
nique.


In principle, the n13He 3S1 channel is coupled to the
p13H channel, as well as to the n13He and p13H 3D1
channels. This coupling has been ignored in the calcula-
tions performed so far, although the method above can
be generalized to treat multichannel problems. In the
specific case of the n1 3He state, it is not known how
these couplings, which are found to be small in an R-
matrix analysis of the n13He reaction (Hale, 1990),
would influence predictions for the 3He(n ,g)4He cross
section.


The cross sections for the p1 3He and n1 3He cap-
tures have also been shown to be quite sensitive to the
treatment of D degrees of freedom (Schiavilla et al.,
1992). Indeed, perturbative estimates of the two-body
current contributions associated with D excitation lead
to a substantial overprediction of the measured n1 3He
cross section. To date, N1D coupled-channel calcula-
tions to describe the A54 nuclei bound and continuum
states have not been attempted. However, the
correlation-operator method used in VMC has been
generalized to include one- and two-D admixtures in the
nuclear wave functions—the so-called transition-
correlation-operator method, briefly discussed in Sec. V.
The transition-correlation operator is constructed from
interactions, such as the Argonne v28 (Wiringa, Smith,
and Ainsworth, 1984), that include explicit D degrees of
freedom.
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The cross section for radiative capture of thermal neu-
trons on 3He has most recently been measured by two
groups (Wolfs et al., 1989; Wervelman et al., 1991); they
quote values of (5466) and (5563) mb, respectively, in
good agreement with each other and with two earlier
measurements (Bollinger, Specht, and Thomas, 1973;
Suffert and Berthollet, 1979), although not with the
smaller value reported by Alfimenkov et al. (1990). The
proton weak capture on 3He cannot be measured in the
energy range relevant for solar fusion, and earlier esti-
mates for its cross section were based upon shell-model
wave functions (Werntz and Brennan, 1967,1973). The
neutrinos produced by this reaction possess the distinc-
tion, within the pp cycle, of having the larger energy.
The associated small flux might be detectable in the next
generation of solar neutrino experiments (Bahcall and
Ulrich, 1988).


The VMC calculated values for the 3He(n ,g)4He
cross section at thermal-neutron energies and the 3He
(p ,e1ne)4He S factor at zero energy are listed in Tables
XIX and XX, while those for the matrix elements of the
one- and two-body current contributions—defined,
respectively, as ^4Heujxun3He;J51,Jz51& and
^4HeuAx ,2up3He;J51,Jz51&/C0 @C0 is defined in Eq.
(9.33)]—are given in Tables XXI and XXII (from Schia-
villa et al., 1992).


Several comments are in order:
(1) The IA value for the radiative-capture cross sec-


tion is one order of magnitude smaller than the experi-
mental value.


(2) The matrix elements of the one- and (leading)
two-body operators have opposite signs. Because of the


TABLE XX. Cumulative and normalized contributions to the
S factor of the weak-capture 3He(p ,e1ne)4He at zero energy,
obtained with one-body currents in the impulse approximation
(IA), with inclusion of the two-body axial currents associated
with, respectively, the p- and r-meson seagull terms and rp
mechanism (IA1mesonic), and finally also including the two-
body terms due to D-isobar degrees of freedom, generated
with the transition-correlation-operator method.


1023S (MeV b)


IA 6.88
IA1 mesonic 7.38
IA1•••1D 1.44


TABLE XIX. Cumulative and normalized contributions to the
total cross section of the radiative-capture 3He(n ,g)4He at
thermal-neutron energies. Notation is same as in Table XVII.


sT(mb)


IA 5.65
IA1MI 72.5
IA1MI1MD 83.7
IA1•••1D 85.9
Expt. 5563a


aWolfs et al., 1989; Wervelman et al., 1991.
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resulting cancellation, the predicted value for the cross
sections of the n1 3He and, particularly, p1 3He cap-
tures is exceptionally sensitive to the model for the two-
body electroweak current operators.


(3) If the D contribution is estimated using perturba-
tion theory, the radiative-capture cross section is calcu-
lated to be 112 mb, as compared to an experimental
value of 55 mb. Explicit inclusion of D-isobar degrees of
freedom in the nuclear wave functions, however, leads
to a significant reduction of this discrepancy.


(4) In Tables XXI and XXII, the row labeled @D] d
denotes contributions due to the direct coupling of the
photon or axial current to a D , while that labeled @D] r
denotes renormalization corrections, namely, the modi-
fication of the purely nucleonic matrix elements due to
the presence of D-isobar components in the wave func-
tions. These components, as expected, have the same
sign as the IA matrix element. What may be surprising is
the magnitude of the correction; the ratio @D#r /IA is
.0.75 (0.48) for radiative (weak) capture. However, this
result is easily understood when one considers that the
transition operators associated with this correction, in
contrast to the one-body nucleon current, have a nonva-
nishing matrix element between the dominant S-wave
components of the 3He and 4He ground states.


(5) The two-body model-dependent electromagnetic
contributions due to the rpg and vpg mechanisms
have been calculated using the rather ‘‘hard’’ cutoff val-
ues Lp51.2 GeV and Lr5Lv52 GeV at the meson-
NN vertices. Use of ‘‘softer’’ values for them [as indi-
cated for the rpg current by a study of the B(Q) deu-
teron structure function] would significantly reduce their
contribution.


TABLE XXI. Contributions to the matrix element of the ra-
diative capture 3He(n ,g)4He at thermal-neutron energies.
The rows labeled @D] d,r correspond to contributions from, re-
spectively, direct g-D couplings and renormalization correc-
tions. Notation is the same as in Table XVIII.


102 M.E. (fm 3/2)


IA 20.165
MI 0.756
MD 0.044
@Dg#d 0.174
@Dg#r 20.125


TABLE XXII. Contributions to the matrix element of the
weak-capture 3He(p ,e1ne)4He, multiplied by @„exp(2ph)
21…/(2ph)#1/2, at zero energy. The rows labeled @D] d,r corre-
spond to contributions from, respectively, direct axial-vector-D
couplings and renormalization corrections. Notation is the
same as in Table XX.


M.E. (fm 3/2)


IA 0.3849
mesonic 0.0137
@Db#d 20.3974
@Db#r 0.1861
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(6) The capture cross sections show a strong depen-
dence on the scattering length. By varying the n1 3He
(p1 3He) scattering wave function so that the scattering
length ranges from 3.25 fm (9.0 fm) to 3.75 fm (11.0 fm),
which is the range given by the data analysis, the
radiative-capture cross section varies from .1.3 to .0.7
times the present prediction, while the weak-capture
cross section is .1.2 to .0.8 times the prediction listed
in Table XX. Obviously, a more accurate experimental
determination of the effective range parameters for low-
energy n1 3He and p1 3He elastic scattering would be
useful in ascertaining the quality of the interactions
and/or the reliability of the variational description of the
continuum states.


(7) Finally, the ND and DD interactions and the axial
N→D coupling are not well known. Uncertainties on the
precise value of the latter produce cross-section results
which, in the case of the weak capture, may differ by as
much as a factor of 2 (Schiavilla et al., 1992). Clearly, the
substantial overprediction of the n1 3He cross section is
unsatisfactory. At this point, it is unclear whether this
discrepancy is due to deficiencies in the VMC wave
functions, or two-body current operators, or more subtle
dynamical effects (coupling to other channels or three-
body currents, for example). Future calculations based
on more accurate CHH, Faddeev-Yakuboysky, or
GFMC wave functions should resolve some of these is-
sues.


2. The 2H(d,g)4He radiative capture


2H(d ,g)4He capture, at very low energies, occurs be-
cause of the presence of D-state components in the wave
functions. Both states are generated by the tensor part
of the two-nucleon interaction, and this reaction can
therefore provide information, albeit indirect, on the
tensor force in nuclei.


The radiative fusion of two deuterons also has impor-
tant implications in nuclear astrophysics—it influences
the predictions for the abundances of the primordial el-
ements in the universe (Fowler, 1984)—and in fusion
research (Cecil and Newman, 1984).


Experimental and theoretical studies of the
2H(d ,g)4He reaction have been carried out since the
early fifties (Flowers and Mandl, 1950; Meyerhof et al.,
1969; Skopik and Dodge, 1972; Poutissou and Del Bi-
anco, 1973). In the eighties, advances in experimental
techniques and, in particular, the availability of polar-
ized ion beams made it possible to measure cross sec-
tions and polarization observables at energies ranging
from 25 keV to about 50 MeV (Weller et al., 1998, 1986;
Mellema, Wang, and Heaberli, 1986; Barnes et al., 1987;
Langenbrunner et al., 1988). It is fair to say, however,
that progress in the theoretical description of this reac-
tion has proceeded at a slower pace. Most of the calcu-
lations have been based on the resonating group method
(Watcher, Mertelmeier, and Hofmann, 1988) or more
phenomenological approaches (Weller et al., 1984, 1986;
Santos et al., 1985; Arriaga, Eiró, and Santos, 1986;
Mellema, Wang, and Heaberli, 1986; Tostevin, 1986; As-
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senbaum and Langanke, 1987; Piekarewicz and Koonin,
1987; Arriaga et al., 1988; Langenbrunner et al., 1988),
for which the connection with the underlying two- and
three-nucleon interactions governing nuclear dynamics
becomes rather tenuous.


In the early nineties, a VMC calculation of this reac-
tion was performed (Arriaga et al., 1991). The experi-
mental data indicate that the S factor is constant below
c.m. energies of 500 keV, suggesting that the reaction
proceeds predominantly via S-wave capture. Thus the
5S2 state should be the only important entrance channel
at these energies. The corresponding VMC wave func-
tion ignores couplings to the 1D2 and 5D2 as well as to
the n13He and p13H channels. However, D-wave con-
tributions should be suppressed because of the centrifu-
gal barrier. Contributions due to couplings to the 311
channels are also expected to be small, since angular
momentum and parity selection rules require a relative
orbital angular momentum of two units between these
clusters, which should again be suppressed at low ener-
gies. These conclusions are corroborated by resonating-
group-method calculations (Chwieroth, Tang, and Th-
ompson, 1972; Hofmann, Zahn, and Stöwe, 1981;
Kanada, Kaneko, and Tang, 1986).


The S factor obtained in the VMC calculation for en-
ergies below 500 keV was found to be about an order of
magnitude smaller than measured. To shed some light
on this disastrous result, Arriaga et al. (1991) wrote the
T2


El transition matrix element as (using a schematic no-
tation)


^4HeuE2udd&[E
0


`


dr c~r ;5S2!Y~r ;5S2!, (9.35)


where c(r ;5S2) is the relative wave function between
the two deuteron clusters, and the function Y(r ;5S2)
contains all information about the bound-state wave
functions and transition operator. The Y function exhib-
its positive and negative regions, which nearly cancel
out. Its positive portion is essentially due to D→S and
its negative portion to S→D transitions. Thus the value
of the E2 matrix element becomes very sensitive to the
relative wave function c(r ;5S2). Indeed, Arriaga et al.
(1991) also showed that the S factor obtained with a
wave function c(r ;5S2) slightly worse (variationally)
than the optimal one was in reasonable agreement with
data. This wave function had precisely the same
asymptotic behavior (phase shift) as the optimal, but
had a node in the interior region. The possible presence
of inner oscillations in the relative wave function for
clusters of nucleons is due to Pauli repulsion, as has
been pointed out in the context of resonating-group-
method calculations (Tamagaki and Tanaka, 1965; Okai
and Park, 1966).


While the present VMC calculation is clearly unsatis-
factory and needs to be improved, it is clear that this
reaction shows an interesting interplay between the D
states of the deuteron and a particle, both of which are
determined by the tensor force, and the d1d continuum
wave function. It is expected that in the next few years
advances in the description of the four-nucleon con-
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tinuum will make it possible to study these subtle dy-
namic effects in a more precise way.


X. THREE-NUCLEON SCATTERING ABOVE BREAKUP


The pd and nd reactions provide a wealth of informa-
tion about nuclear interactions. Many experiments have
been carried out, including measurements of total and
differential cross sections, polarization observables, and
cross sections in specific kinematics. These experiments
provide a host of stringent tests of the nuclear interac-
tion models, in particular the three-nucleon interaction.
An excellent review of this subject has recently been
provided by Glöckle et al. (1996). In this section we
present a few of the highlights.


To date, calculations above breakup with realistic in-
teractions have been performed only with the
momentum-space Faddeev method. However, compari-
sons of the breakup amplitude have been made using a
simplified Malfliet-Tjon spin-dependent S-wave force
(Friar et al., 1990), and hence it is reasonable to believe
that other methods will soon also be able to produce
reliable results above breakup. Calculations that include
the Coulomb interaction will be particularly valuable.


In general, theoretical predictions are in impressive
agreement with experimental results. A first step in any
comparison with data is to examine the total cross sec-
tion, which is presented in Fig. 58. The total nd cross
section is well reproduced by any of the modern realistic
NN interaction models, many of which are shown in the
figure. This cross section depends only upon the low par-
tial waves of the NN interaction; the J54 channels give
only a modest two-percent contribution at 100 MeV.
The experimental results are taken from many sources,
including Juren and Knable (1950), Fox et al. (1950),


FIG. 58. Total cross section for nd scattering. Different NN
interactions are shown: s , Bonn B (L), Paris (x), Argonne
v18 and (v) Reid 93. Data are from Fox et al. (1950), deJuren
(1950), deJuren and Knable (1950), Riddle et al. (1965), Meas-
day and Palmieri (1966), Shirato and Koori (1968), Davis and
Barschall (1971), Clement et al. (1972), Koori (1972), Phillips,
Berman, and Seagrave (1980), and Schwarz et al. (1983).
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Riddle et al. (1965), Measday and Palmieri (1966),
Shirato and Koori (1968), Davis and Barschall (1971),
Clement et al. (1972), Koori (1972), Phillips, Berman,
and Seagrave (1980), and Schwarz et al. (1983).


The total cross section is split into elastic and inelastic
components, each of which has been measured. We turn
first to elastic differential cross sections. As the
momentum-space Faddeev calculations are performed
without the Coulomb interaction, one would prefer to
compare with nd data. The number of nd measure-
ments is unfortunately rather small, although at a few
energies both nd and pd data do exist. In Fig. 59 elastic
pd and nd data are compared with nd Faddeev calcula-
tions. The calculations show little dependence on the
NN interaction model and are dominated by quartet
scattering (Aaron and Amado, 1966; Koike and Tanigu-
chi, 1986). As is apparent in the figure, a substantial dis-
crepancy exists between theory and experiment in the
low-energy regime at forward and backward angles, as
one would expect based upon the importance of the
Coulomb interaction in these regions. The importance
of these Coulomb effects has been confirmed in recent
calculations of Kievsky, Viviani, and Rosati (1995).


The agreement is quite good at higher energies, from
8 to 35 MeV. At yet larger energies small discrepancies
again appear, until at the largest energies (.140 MeV)
these become quite significant. Clearly, at larger ener-
gies one should study results in a relativistic framework
in order to develop a clearer understanding of the suc-
cesses and failures of NN interaction models.


Spin observables in elastic scattering present a very
significant challenge for nuclear interaction models.
Consider an initial state with an incoming nucleon po-
larized along the direction P and an unpolarized deu-
teron. The cross section can be defined as a sum of two
terms, the unpolarized cross section plus a term propor-
tional to the polarization:


I5I0S 11(
k


PkAkD , (10.1)


where the Ak are the nucleon analyzing powers. If
Mmd8 ,m8;md ,m represents the scattering amplitude for a


transition md ,m→md8 ,m8, then the differential cross
section is simply given by


ds


dV
5uMmd8 ,m8;md ,m~p8,p!u2, (10.2)


while the analyzing powers are obtained as a ratio,


Ak5
tr~MskM†!


tr~MM†!
. (10.3)


Note that, because of parity conservation, the analyzing-
power components in the scattering plane (the xy plane)
vanish—i.e., Ax5Az50—and only Ay is different from
zero.


In contrast to the total cross-section measurements, in
the nucleon analyzing power the j52 NN forces can be
significant even at energies as low as 10 MeV. At ener-
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FIG. 59. Elastic pd and nd angular distributions, experiment and theory. Faddeev calculations are performed by the Bochum
group (Glöckle, Witala, et al. (1996) for the indicated NN interaction models. The Coulomb interaction is not included (see
discussion in text). 3 MeV: (s) pd data (Sagara et al., 1994); (L) nd data (Schwarz et al., 1983); theory: solid line, Nijm I,
long-dashed line, Nijm II, short-dashed line, Reid 93, dotted line, Argonne v18 . 12 MeV: (s) pd data (Sagara et al., 1994), L
(Grüebler et al., 1983), 3 (Rauprich et al., 1988); theory: dotted line Argonne v18 . 28 MeV: (s) pd data (Hatanaka et al., 1984);
(L) nd data (Gouanere et al., 1970); theory: solid line, Nijm I. 65 MeV: (s) pd data (Shimizu et al., 1982); (L) nd data (Rühl
et al., 1991); theory: dotted line, Argonne v18 . 146 MeV: (s) pd data (Postma and Wilson, 1961), L (Igo et al., 1972); nd data at
152 MeV 3 (Palmieri, 1972); dotted line, Argonne v18 . 240 MeV: (s) pd data (Schamberger, 1952); theory: dotted line, Argonne
v18 .

gies above 30 MeV (Fig. 60), very good agreement is
found between theory and experiment, and little differ-
ence is found between nd and pd results (Glöckle and
Witala, 1990; Tornow et al., 1991; Witala and Glöckle,
1991).


A significant discrepancy exists between theory and
experiment at lower energies, however. The calculations
underestimate the data by approximately 30% at 10
MeV (Fig. 61). The 3PJ forces are dominant in deter-
mining the vector analyzing power Ay ; indeed, force
models with different 3PJ phases can yield significantly
different results. For example, the older Argonne v14
interaction model deviates most strongly from other re-
sults as its 3PJ phases are the most different. More re-
cent NN interaction models all produce similar results,
which are in sizable disagreement with the data.


Deuteron analyzing powers, describing experiments
with an initial deuteron polarization, can be defined
similarly. The deuteron, being a spin-1 system, can be
vector or tensor polarized. The initial polarizations of
the deuteron are described by a vector Pi and a tensor
Pjk . For an unpolarized initial nucleon, the cross section
is
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I5I0S 11
3
2(k


PkAk1
1
3(jk PjkAjkD . (10.4)


The observables are often written in spherical tensor no-
tation, in which, for example, iT115(A3/2)Ay . The ex-
perimental situation for the deuteron analyzing power is
quite similar to that for the nucleon (Witala et al., 1993;
Sagara et al., 1994)—agreement is quite good above
30–40 MeV, but serious disagreements exist at lower en-
ergies.


Current three-nucleon interaction models do not
eliminate the Ay discrepancy. Indeed, Witala, Hüber,
and Glöckle (1994) have performed calculations with
the Bonn-B NN interaction and various components of
the Tucson-Melbourne three-nucleon interaction model,
including pp, pp1pr, and pp1pr1rr exchanges. The
corresponding results, shown in Fig. 62, do not improve
agreement with the data. The present inability of theory
to reproduce the Ay data constitutes one of the remain-
ing open problems in the few-nucleon sector.


Other observables, including tensor analyzing powers
and spin-transfer coefficients, have also been measured.
The former are generally well described by the calcula-
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FIG. 60. The nucleon analyzing power Ay for elastic Nd scattering at 30 MeV and above. 30 MeV: (s) pd data (Johnston et al.,
1965); (L) nd data (Dobiasch et al., 1978); theory: solid line, Nijm I; long-dashed line, Nijm II; short-dashed, Reid 93, dotted line
Argonne v18 . 50 MeV: (s) pd data (King et al., 1977); (L) nd data (Romero et al., 1982; Watson et al., 1982); theory: Argonne
v18 . 155 MeV: (s) pd data (Kuroda, Michalowicz, and Poulet, 1966); theory: dotted line, Argonne v18 .

tions, except at low energies where one would expect
Coulomb force corrections to be important (Witata
et al., 1993; Sagara et al., 1994). The spin-transfer coeffi-
cients are obtained from experiments in which polariza-
tion of some of the spins in the final state are also mea-
sured; they indicate the transfer of polarization from an
initially polarized nucleon to the final polarization of the
outgoing nucleon. The spin-transfer coefficients show
some limited dependence on the NN interaction model
and can also be fairly well described in calculations using
modern NN interaction models (Sydow et al., 1994).


We now turn to the 3N breakup process. Here the
available phase space is much larger (the number of in-


FIG. 61. The nucleon analyzing power Ay for elastic Nd scat-
tering at 10 MeV. Comparison of experimental data and Fad-
deev calculations employing previous and current-generation
NN interaction models. pd data: s , Sagara et al., 1994); 3 ,
Sperisen et al. (1984); v , Rauprich et al. (1988); d , Clegg and
Haeberli (1967). nd data L , Howell et al. (1987). Theory:
solid curve, Nijm I; dashed curve, Nijm II; dashed curve, Reid
93; dotted curve, Argonne v18 , dot-dashed-curve, Argonne
v14 , dash-dot-dot curve, Nijm 78.
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dependent momentum components is five after using en-
ergy and momentum conservation), so a much wider
range of kinematics can in principle be measured. Two
particular sets of kinematics have been particularly well
studied. The first case occurs when in the final state, one
nucleon is nearly at rest in the laboratory system—the
so-called quasifree scattering process. The initial motiva-
tion for studying this case was the belief that the cross
section would be dominated by the scattering of two
nucleons, with the third near-zero-momentum nucleon
acting essentially as a spectator.


In quasifree scattering kinematics, the dominant pro-
cess should be single-nucleon scattering (Chew, 1950;
Kottler, 1965), that is, T't(2)E, and thus


^f0uU0uf&5^f0u~11E!t ~2 !Euf&. (10.5)


This yields the product of an essentially on-shell NN t(2)


matrix and the deuteron state at zero momentum. Such


FIG. 62. Comparison of Ay data with calculations based upon
an NN interaction alone, and with two- and three-nucleon in-
teractions: Left, at 3 MeV; Right, at 14.1 MeV. Solid curves,
calculations for the Bonn NN interaction alone; long-dashed
curves, including the pp interaction; short-dashed curves,
pp1pr ; dotted curves, pp1pr1rr terms from the Tucson-
Melbourne three-nucleon interaction. The nd data for 3 MeV
are from McAninch et al. (1993) and McAninch, Lamm, and
Haeberli (1994). The data for 14.1 MeV are from Howell et al.
(1987).
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FIG. 63. Breakup cross sections in quasifree scattering kinematics. Comparison of pd data to calculations with different NN
interaction models: Argonne v18 (—), Reid 93 (22), Nijm I (- - - ), and Nijm II (- - - ).

calculations indeed see a peak near quasifree conditions,
but higher order corrections can be important. The lat-
ter can in principle be calculated in a multiple-scattering
series, but convergence in such a scheme can be prob-
lematic, particularly at energies significantly below 100
MeV (Glöckle et al., 1996). Above 100 MeV, inclusion
of the first-order term in the rescattering series leads to
essentially converged results.


Complete calculations are also available and demon-
strate that rescattering effects can be quite important at
lower energies. Theoretical predictions for pd scattering
at energies between 10 and 65 MeV are compared with
experimental data in Fig. 63. Again different NN inter-
action models produce similar results. Except at the
highest energy, theory always overestimates data in the
region of the quasielastic peak. Discrepancies at lower
energies could be due to Coulomb effects—it will be
quite valuable to have full calculations including the
Coulomb interaction.


The second set of kinematics often considered is when
two nucleons leave the interaction region with nearly
equal momenta. In such a case the final-state interac-
tions between these two outgoing nucleons are necessar-
ily strong. Indeed, this configuration has been seen as
providing information on the nn scattering length. In
the past, the Watson-Migdal approximation (Watson,
1952; Golberger and Watson, 1964) has often been used
to extract the nn scattering length from final-state inter-
action peaks in the nd breakup process. In that approxi-
mation, the absolute square of the breakup amplitude is
factored into an energy-independent constant C and an
enhancement factor:


d5s


dV1dV2dS
5ksC~r0 /2 !2


3
p21@1/r01A1/r0


222/~r0a !#2


p21~21/a1r0p2/2!2
, (10.6)


where r0 and a are the effective range and scattering
length for the nn system and p is the relative momen-
tum of the two neutrons. Complete calculations indicate
that such an analysis should be adequate to determine
the scattering length to approximately 0.5 fm. Investiga-
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tion of charge-symmetry-breaking effects will require
smaller uncertainties, however.


A first test of the possibility of extracting the nn scat-
tering length is to try to reproduce the experimentally
well-known np scattering lengths from np final-state in-
teraction peaks measured in pd scattering. Comparisons
of theory to experimental pd and nd results in the re-
gion of the np final-state interaction peak are presented
in Fig. 64; the agreement between theory and experi-
ment is quite good. The experimental np scattering
length is 223.74 fm, and one comes closest to reproduc-
ing this value at E513 MeV, where an extraction from
pd scattering yields approximately (223.360.2) fm for
the CD Bonn and Nijmegen interactions and (223.5
60.2) fm for the Reid 93. Extractions at other energies
range from (223.060.3) fm at 10.5 MeV to (224.260.3)
fm at 19 MeV. Obviously, the three-nucleon and Cou-
lomb interactions can affect the extracted scattering
lengths. Comparisons between experiment and theory
also require a precise simulation of the experimental ac-
ceptance in the detectors.


Though quite a few nn final-state interaction peak
measurements were published quite some time ago, the
details are not specific enough to reproduce in numerical
simulations. A fairly recent nn final-state interaction
peak has been measured at 13 MeV (Gebhardt et al.,
1993). The results of this experiment have been analyzed
by Witala et al. (1995) and again, with more modern NN
interaction models, by Glöckle et al. (1996). The ex-
tracted value of ann is 214.40 fm and is nearly indepen-
dent of which of the modern NN interactions is chosen.
However, the shape of the data is not well reproduced
by theory. This extracted value is far from the result of
218.6(3) fm obtained from analyses of p absorption on
the deuteron (Gabioud et al., 1979; Schori et al., 1987).
Other measurements in this kinematic regime are under-
way (Tornow, Witala, and Brown, 1995).


Two other ‘‘special’’ final-state configurations have
drawn some interest: the collinear and star configura-
tions. In the former, one nucleon is at rest in the center-
of-mass system. In the star configuration, the nucleons
emerge each with the same energy and their momentum
directions are separated by 120 degrees. If the plane of
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FIG. 64. Breakup cross sections near np final-state interaction peak kinematics. Data at 10 MeV: (s) pd data (Grossman, 1993);
13 MeV: (s) nd data (Strate et al., 1988; Strate 1989), (L) pd data (Rauprich et al., 1991); 19 MeV: (s) pd data (Patberg, 1995).
Calculations are for Argonne v18 , Reid 93, Nijm I, and Nijm II NN interaction models.

the momenta lies perpendicular to the beam axis, this
configuration is often called the space-star configuration.
The earliest motivation for studying these two configu-
rations is that the spin-averaged two-pion-exchange
three-nucleon interaction is repulsive in a collinear ge-
ometry and attractive in an equilateral triangle configu-
ration.


The results obtained in the collinear configuration are
generally in good agreement with experiment (Witala,
Cornelius, and Glöckle, 1988a, 1988b; Rauprich et al.,
1991; Witala, Glöckle, and Kamada, 1991; Allet et al.,
1994). Experiments are sometimes contradictory, how-
ever. In one case a hump is seen in the nd data near the
point of collinearity, although no such hump is apparent
in the pd data. Therefore more accurate data are
needed before definite conclusions can be drawn.


Experimental results in the star configuration are at
variance with theory, at least at low energies, where the
partial waves with j < 2 are important. The results are
fairly insensitive to the choice of NN interaction, how-
ever. Studies of this configuration were originally moti-
vated by the fact that three-nucleon interaction effects
could be particularly important. Again, though, the Cou-
lomb distortion of the initial and final wave functions
must be included before rigorous conclusions can be
drawn. At 10 MeV, theory agrees with one set of nd
data (Stephan et al., 1989) but is in disagreement with
another (Finckh, 1990). At 13 MeV, the nd and pd data
differ strongly and theory lies in between. A recent re-
measurement by Tornow et al. (1995) supports the ear-
lier nd data, and hence the discrepancies do seem sig-
nificant.


Many other experiments and calculations have been
performed, including breakup results in different kine-
matics and measurement of spin-transfer observables. In
general, the calculations now seem to be able to describe
the scattering data quite well. In the few exceptions that
exist, notably the low-energy Ay observables, current
three-nucleon interaction models do not seem to im-
prove the situation. Significant advances in theory can
be expected as it becomes possible to perform scattering
calculations above breakup with the Coulomb interac-
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tion. The combination of a huge amount of experimental
data and an accurate calculational ability will provide an
important regime for testing and improving three-
nucleon interaction models.


XI. NUCLEAR RESPONSE


The response to electromagnetic and hadronic probes
provides direct information on dynamics in the nucleus.
The rich structure of nuclear interactions and currents,
combined with the availability of different probes, offers
the opportunity to study many intriguing aspects of
nuclear dynamics. A comprehensive study of nuclear re-
sponse requires an understanding of the nuclear ground-
state wave function, couplings of the various probes to
the nucleus, and final-state interactions. In this section
we first describe the theoretical framework for studying
nuclear response and then discuss electromagnetic and
hadronic response.


A. Theory and calculations


Response functions are obtained from inclusive ex-
periments, in which we essentially assume that the cross
section is dominated by the exchange of a single (vir-
tual) boson. In the electromagnetic case, a virtual pho-
ton is coupled to the nucleus through the nuclear charge
or current operators, Eqs. (5.1) and (5.2). For unpolar-
ized electrons and nuclei, the inclusive cross section in
the one-photon-exchange approximation is given by


d2s


dvdV
5sM@vLRL~q,v!1vTRT~q,v!# , (11.1)


where sM , vL, and vT have been defined in Eqs. (6.2)–
(6.4). Thus the longitudinal @RL(q,v)# and transverse
@RT(q,v)# response functions can be extracted from
measurements at different angles and fixed q and v . For
hadrons, a high-energy nucleon passes near the nucleus
and interacts once by exchanging a virtual meson. In the
approximation where there is only time for a single scat-
tering to take place, a nuclear response function can be
extracted.
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Here we consider response functions in a nonrelativ-
istic framework. Extensions of the definitions of the re-
sponse to the relativistic case are straightforward. How-
ever, relativistic schemes that include final-state
interaction and two-nucleon processes while respecting
Poincaré and gauge invariance are less well developed.
Generically, a response function is given by


R~q,v!5(
f


^0ur†~q!uf&^fur~q!u0&d@v2~Ef2E0!# ,


(11.2)


where the sum runs over all final states of the system uf&.
The coupling r is determined by the probe. Initially we
discuss a generic coupling. This coupling can depend on
one- and two-nucleon operators (and possibly more), in-
cluding dependence upon the orientation of the nucle-
on’s spin and isospin.


In the simplest models of nuclear response, the plane-
wave impulse approximation (PWIA), the response
functions are obtained solely from the nuclear ground-
state momentum distributions and the nucleon form fac-
tors. The response is assumed to be given by an incoher-
ent sum of scattering off single nucleons that propagate
freely in the final state. This simple model provides a
baseline with which to gauge more realistic calculations.


In the PWIA, the sum over final states is carried out
by assuming that the struck nucleon is transferred from
an initial momentum p to a free-particle state of final
momentum q1p, and that the residual A –1 system is
unaffected. The PWIA is expected to be accurate at
high-momentum transfers, where coherent scattering ef-
fects and final-state interactions are small. For a
momentum-independent coupling, the PWIA response
is obtained from a convolution of the nucleon’s initial
momentum distribution with the energy-conserving d
function. For example, for the dominant proton coupling
in the longitudinal response, it is given by (after dividing
out the square of the proton charge form factor)


RL ,PWIA~q,v!5E dpNp~p!dFv2Es2
~p1q!2


2m


2
p2


2~A21 !m G , (11.3)


where Np(p) is the proton momentum distribution in
the ground state. The PWIA ignores the effects of
nuclear binding in the initial state, replacing it with an
average binding energy Es . The remaining terms in the
brackets are the final energies of the struck nucleon and
the recoiling A –1 particle system, respectively.


To go beyond the PWIA, it is useful to write the re-
sponse in terms of the real-time propagation of the final
state:


R~q,v!5
1
p


ReE
0


`


dt e i~v1E0!t^0ur†~q!e2iHtr~q!u0&,


(11.4)


[
1
p


ReE
0


`


dt e i~v1E0!tA~q,t !. (11.5)
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By introducing the spectral function, we can also include
the effects of binding in the initial ground-state wave
function and the residual interactions of the ‘‘spectator’’
nucleons. The spectral function S(p,E) is defined as the
probability of removing a nucleon of momentum p in
the nuclear ground state and leaving the residual A –1
system with an excitation energy E5Eres


A212E0
A [see Eq.


(7.46)]. Ignoring coherent scattering processes and the
interaction of the struck nucleon with the remaining
nucleons, we obtain


A~q,t !5E dp dE S~p,E !e2i[E1E01~p1q!2/2m]t,


(11.6)


where S(p,E) is the spectral function defined in Eq.
(7.46). The integral over time in Eq. (11.5) then yields a
simple energy-conserving delta function. For example,
the longitudinal response is given by


RL ,SF~q,v!5E dp dE Sp~p,E !dFv2E2
~p1q!2


2m G ,


(11.7)


where Sp(p,E) is the proton spectral function.
Ignoring the energy dependence in the spectral func-


tion reproduces the PWIA approximation, as integrating
S(p,E) over the energy loss recovers the momentum
distribution. At large values of the momentum transfer,
the spectral-function approximation is accurate because
the cross section is dominated by striking a single
nucleon, and that nucleon is ejected faster than the typi-
cal time scale of a nuclear interaction. Indeed, this ap-
proximation has been used extensively to study y scaling
(Ciofi degli Atti, 1992), at least in part to obtain infor-
mation about the nuclear momentum distributions.


Often, though, we are interested in experiments at
more modest values of momentum transfer, where final-
state interactions and two-nucleon couplings are impor-
tant. In light nuclei, it is feasible to go beyond the simple
approximations discussed above. Indeed, much of the
interesting physics is obtained only when ground-state
correlations, two-body currents, and final-state interac-
tions are included. We first address the methods used to
address these physics issues.


In the deuteron, it is relatively straightforward to cal-
culate explicitly the final scattering states and sum over
them to obtain the response. Experimentally, the deu-
teron can be used to study a variety of interesting phys-
ics, including, for example, relativistic effects in electron
scattering and reaction mechanisms in hadronic experi-
ments. Since the deuteron is so weakly bound, the inter-
esting interaction effects are comparatively small.


In three-nucleon systems, it is still possible to calcu-
late the final states explicitly, and hence compute the
response by summing over final states. To date, calcula-
tions have been performed for longitudinal and trans-
verse electron scattering in A53 (Golak et al., 1995).
However, present calculations include only single-
nucleon couplings. Inclusion of the two-body currents is
necessary for a realistic comparison with data in the
transverse channel. Proceeding much along the lines of
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the 3N scattering equations described previously, we
wish to calculate the nuclear matrix element


N5^C f
~2 !ur~q!uC0&. (11.8)


The final state C f
(2) is decomposed in terms of Faddeev


amplitudes as


uC f
~2 !&5~11E!c , (11.9)


where E is the permutation operator E5E12E23
1E13E23 . The Faddeev amplitude c obeys the equation


c~2 !5c01G0
~2 !Tc~2 !, (11.10)


where the driving term c0 is different for two- and
three-body fragmentation. For nd breakup, c0 is just the
product of a deuteron state and a plane wave in the
relative motion of the neutron and deuteron. Inserting
Eq. (11.10) into Eq. (11.8) yields


N5^c0u~11E!r~q!uC0&1^c0uETG0~11E!r~q!uC0&.
(11.11)


The first term is the PWIA and the second recovers the
final-state interaction. This rescattering term can be
written (Glöckle et al., 1996)


Nrescat5^c0u~11E!uU&, (11.12)


where U is obtained as a solution of a Faddeev-type
integral equation:


U5TG0~11E!r~q!uC0&1TG0EuU&. (11.13)


The kernel in this equation is the same as for 3N scat-
tering in Eq. (8.30), but the driving term is different, as it
contains the current operator acting upon the ground
state.


Beyond A53, calculations have so far been per-
formed by considering transforms of the nuclear re-
sponse functions. This subject has quite a long history,
both within nuclear physics and elsewhere (Baym and
Mermin, 1961; Thirumalai and Berne, 1983; Silver, Sivia,
and Gubernatis, 1990; Gubernatis et al., 1991; Bonin-
segni and Ceperley, 1996). The basic idea is to sum over
a set of final states in order to make as ‘‘complete’’ a
calculation as possible. Complete here means full inclu-
sion of final-state interactions and realistic couplings.
Summing over final states allows one to avoid having to
implement specific boundary conditions, one of the most
difficult parts of dealing with quantum few- and many-
body problems in the scattering regime.


We first consider the Lorenz-kernel transform. To
date, this method has been applied with realistic inter-
actions to the longitudinal scattering of electrons in A
53 (Martinelli et al., 1995) and with approximate treat-
ment of tensor interactions in A54 (Efros, Leidemann,
and Orlandini, 1997). The Lorenz-kernel transformed
response is given by


L~q,sR ,sI!5E dv
S~q,v!


sI
21~v2sR!2


. (11.14)


This transformation allows one to emphasize the re-
sponse for the energies near v5sR , with a width of sI .
The response L can be calculated directly from an am-
plitude F :
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uF&5
1


H2E02sR1isI
r~q!u0&, (11.15)


where the transformed response is given by the norm of
uF&; that is, L(q,sR ,sI)5^FuF&. The advantage in this
formulation is that, for nonzero sI , the boundary con-
ditions are simple because the state uF& is exponentially
damped at large distances.


The state uF& can be written in terms of Faddeev com-
ponents uF&5( if i . Using standard manipulations, one
obtains


uF&5
1


E01sR2isI2H0
~H2H0!uF&


2
1


E01sR2isI2H0
r~q!u0&, (11.16)


where H is the full Hamiltonian and H0 is the kinetic-
energy operator. This can again be recast into an inho-
mogeneous Faddeev equation, here evaluated at com-
plex energy E01sR2isI .


It is easier to compute L for larger sI , because one is
averaging over more final states. Consequently, larger sI
implies fewer oscillations in the function @1/(H2E0
2sR2isI)#r(q)u0&, the norm of which yields
L(q,sR ,sI). For the same reason, though, it is more
difficult to obtain the desired response function S(q,v)
from the transformed response with larger values of sI .
In the quasielastic regime, a value of sI around 10 MeV
is deemed sufficient. Near threshold, it may prove ad-
vantageous to subtract the response of isolated states
when calculating L(q,sR ,sI), as the response to these
states can be calculated explicitly.


Exact calculations beyond A53 have so far relied
upon another integral transform of the response: the Eu-
clidean response, or Laplace transform of S(q,v). The
Euclidean response is defined as


E~q,t!5E dvexp@2~H2E0!t#S~q,v!. (11.17)


Its name derives from the fact that it can be obtained by
the replacement of the real time t in the nuclear propa-
gator [Eq. (11.5)], by an imaginary time t . The Euclid-
ean response integrates over even more final states than
the Lorenz kernel, and hence it is more difficult to go
back directly to S(q,v). However, it is easier to calcu-
late than L , particularly for systems with many degrees
of freedom.


This is principally because E(q,t) can be cast in a
path-integral form which can be naturally evaluated with
Monte Carlo techniques:


E~q,t!5^0ur†~q!exp@2~H2E0!t#r~q!u0&. (11.18)


Indeed, for condensed-matter systems with spin-
independent interactions, systems with hundreds of in-
teracting particles can be treated (Boninsegni and Cep-
erley, 1996). The path-integral representation of E(q,t)
is useful both from a computational point of view as a
way of understanding some of the important experimen-
tal features of nuclear response in the quasielastic re-
gime.
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At t50, the Euclidean response is equivalent to the
associated sum rule [for example, Eq. (7.29)], while the
derivatives with respect to t are just the energy-
weighted sum rules [Eq. (7.39)]. For larger t , increas-
ingly lower-energy contributions to the response are
weighted more strongly, until, in the large-t limit, the
elastic form factors are recovered. The fact that the cal-
culation is placed in a path-integral framework means
that there are strong correlations in the calculation be-
tween closely spaced values of t in the response. This
fact has been exploited in the attempt to recover infor-
mation on S(q,v) from path-integral calculations using
Bayesian probability theory (Gubernatis et al., 1991;
Boninsegni and Ceperley, 1996). This attempt has
proven successful in the quasielastic regime in the
condensed-matter problem of the response of helium,
but less so at lower energies where strong resonances
occur (Boninsegni and Ceperley, 1966).


To illustrate the basic concept of the path-integral cal-
culation, consider the response of a probe that is
coupled to nucleons only @r(q)5( iexp(iq•ri)# . This
would be given by the sum over paths:


E~q ,t!5 (
paths,i,j


j0~quri2rj8u!, (11.19)


where the paths run from initial points R
5$r1 , . . . ,ri , . . . % to R85$r81 , . . . ,ri8 , . . . % and are
weighted with a probability proportional to
^C0uR8&^R8uexp@2(H2E0)t#uR&^RuC0&. In the simplest
model of longitudinal electron scattering, where the cou-
pling r is only to individual protons, the Euclidean re-
sponse would also be given by the sum over paths:


E~q ,t!5 (
paths,i,j


8
j0~quri2rj8u!, (11.20)


but the sum now extends only over the initial and final
positions of the protons. Thus the charge dependence of
the nuclear interaction means that the charge propa-
gates much faster than the nucleons. This distinction is
an important point in understanding the various nuclear
response functions, which we discuss below.


B. Comparison with experiment


By now a rich set of experimental data is available on
the nuclear response. In light nuclei, the electromagnetic
longitudinal and transverse responses have been mea-
sured in the deuteron, the trinucleons, and the alpha
particle. In addition, hadronic experiments have been
used to extract the spin-isospin responses in both the
deuteron and heavier systems.


When compared with simple PWIA results, these ex-
periments show several intriguing features, features that
may enhance our understanding of the nuclear response.
Particularly striking is the suppression in the ratio of
longitudinal to transverse electromagnetic response near
the quasielastic peak. This suppression occurs in all nu-
clei with A>4, but is absent for A52 and 3. In addition,
the longitudinal response shows significantly greater
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strength at energies away from the quasielastic peak
than occurs in PWIA estimates of the response.


Hadronic probes have provided additional important
information. In particular, the peak of the (p ,n) re-
sponse is shifted toward significantly higher energies
than the standard peak v5q2/2m observed in (p ,p)
measurements (Chrien et al., 1980; Taddeucci, 1991;
Carlson and Schiavilla, 1994b). Finally, there has been
much discussion of recent measurements of the spin-
longitudinal and spin-transverse response (Taddeucci
et al., 1994). Comparisons of all these results with ‘‘com-
plete’’ calculations are extremely valuable in under-
standing nuclear dynamics in the quasielastic regime.


We first discuss the results obtained in electron scat-
tering. For unpolarized electrons and targets, the inclu-
sive cross section is obtained as a sum of longitudinal
and transverse response functions multiplied by the as-
sociated couplings of the virtual photon. The longitudi-
nal and transverse responses have been obtained at the
Bates (Dow et al., 1988; Dytman et al., 1988; von Reden
et al., 1990) and Saclay (Marchand et al., 1985; Zghiche
et al., 1993) accelerator facilities for different nuclei and
a sizable range of kinematics.


In any experiment, the cross section is a sum of longi-
tudinal and transverse terms, and hence one must ex-
trapolate the results at different kinematics to obtain the
longitudinal and transverse response. In light nuclei, this
appears to be well under control, as the experimental
results from different laboratories are in agreement. In
heavier systems, considerable discrepancies persist even
at the same kinematics, and an unambiguous separation
into longitudinal and transverse response is problematic
(Jourdan, 1995, 1996).


The longitudinal response is given by


RL~q,v!5(
f


^0ur†~q!uf&^fur~q!u0&d~v1E02Ef!,


(11.21)


where r(q) is the nuclear charge operator in Eq. (5.1).
In the nonrelativistic limit, recall


FIG. 65. Deuteron longitudinal response at 300 MeV/c ; theory
from Carlson and Schiavilla (1992) and experiment from Dyt-
man et al. (1988). Calculations include final-state interactions
and show results with one- and two-body charge operators.
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r~q!5(
i


e iq•ri
11tz ,i


2
. (11.22)


Relativistic corrections and two-body contributions to
the charge operator have also been considered, but nu-
merically they have been found to be quite small.


The transverse response is given by


RT~q,v!5(
f


^0uj†~q!uf&^fuj~q!u0&d~v1E02Ef!.


(11.23)


Here the current operator j(q) contains both one- and
two-body terms, the latter being required for current
conservation.


Experimentally, after scaling by the appropriate
single-nucleon couplings, the ratio of the transverse to
longitudinal response is significantly enhanced in the re-
gime of the quasielastic peak (v'vqe[q2/2m) for 4He
and larger nuclei, but for A52 and 3 it is very near one.
Plane-wave impulse-approximation calculations yield
too much strength in the longitudinal response near the
peak, and too little at energies well below or above the


FIG. 66. Deuteron transverse response at 300 MeV/c , as in
Fig. 65.
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peak. Various exotic mechanisms, including a static
nucleon ‘‘swelling,’’ have been introduced to explain
one or more of these effects. However, as we shall see,
this occurs quite naturally in complete calculations of
the nuclear response.


We first consider the longitudinal and transverse re-
sponses of the deuteron, which are presented in Figs. 65
and 66. The figures present the calculation in the im-
pulse approximation (with one-body charge and current
operators) and the full response. Note that for the spe-
cial case of the deuteron, the full calculation is quite
close to the impulse approximation. The primary reason
is that the struck nucleon can interact with only one
other nucleon, and the average separation between the
two nucleons is twice the deuteron’s rms radius, or
about 4 fm. Consequently, the effects of two-body cur-
rents in the deuteron are quite small. In addition, the
effects of final-state interactions are also quite small, ex-
cept in the very low-energy part of the response. As is
apparent in the figures, the calculations agree quite well
with experimental results in the case of the deuteron. In
the longitudinal case, the impulse and full charge opera-
tors produce nearly identical results. In the transverse
channel, the two-body currents do have some effect.


We next present results for the trinucleons: the longi-
tudinal responses at 250 and 300 MeV/c are given in
Figs. 67 and 68. The momentum-space Faddeev calcula-
tions are reproduced from Golak et al. (1995). In general
the responses are quite well reproduced, except for a
slight overprediction of the 3He response at 300 MeV/c .
Calculations of the transverse response have also been
presented. These significantly underpredict the available
data at both momentum transfers. However, only single-
nucleon current operators have been included in these
calculations.


Complete Faddeev calculations that include two-
nucleon currents are not yet available. Consequently, we
also show the Euclidean longitudinal and transverse re-
sponses for 3He at 400 MeV/c in Figs. 69 and 70. In the
figures, a scaled response Ē(q,t)5exp@q2t/(2m)#E(q,t)
has been plotted. This scaling removes trivial kinematic

FIG. 67. 3He (a) and 3H (b) longitudinal response at 250 MeV/c . Calculations are from Golak et al. (1995): solid line, Bonn B NN
interaction; I-III long-dashed line, Malfliet-Tjon, NN interactions; dotted line, Bonn B contributions from the Nd channel;
short-dashed line, contribution from the Npn channel. Experimental data: h , Marchand et al. (1985); s, Dow et al. (1988).
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FIG. 68. 3He (a) and 3H (b) longitudinal response at 300 MeV/c , as in Fig. 67.

effects and emphasizes the more interesting interaction
effects. The scaled response of an isolated proton would
simply be given by Ē(q,t)51.


For the longitudinal response, we show only the ‘‘full’’
response—that obtained with one- and two-body charge
operators. In the transverse case, several curves are pre-
sented: the measured response as well as the responses
for the impulse (one-body) and full (one- and two-body)
current operators. In the longitudinal channel, the con-
tributions due to the neutron charge operator, relativis-
tic corrections, and two-nucleon couplings are found to
be quite small; the response from the single-proton cou-
pling is nearly identical to the full result.


The imaginary-time response Ep(q ,t) measures the
propagation of charge with imaginary time in a nucleus.
In the limit t→0, the propagator ^Ruexp@2(H
2E0)t#uR8&→d(R2R8). As t increases, the nucleons
move, and the imaginary-time propagator is propor-
tional to exp@2m/(2t)(R2R8)2# . This is the part of the
response that comes from the PWIA. In the limit that
we consider a struck nucleon only (imagining that the
propagator acting on the spectator nucleons can be ap-


FIG. 69. Scaled Euclidean longitudinal response of 3He at 400
MeV/c compared to the Laplace transform of experimental
data from Marchand et al. (1985). The shaded bands represent
the approximate experimental uncertainty and statistical errors
in the Monte Carlo calculation.
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proximated as one), we obtain the response due to the
nucleon’s momentum distribution in the ground state.
Including the interactions of the spectator nucleons with
each other recovers the spectral-function approximation
to the response.


However, another effect is also important. As the sys-
tem evolves with imaginary time, the charge can propa-
gate by charge-exchange interactions, the most impor-
tant being one-pion exchange. The charge exchange
implies a hardening of the response, a shift to higher
energy, as the portion of the response due to single-
nucleon processes is reduced. In a static picture of the
longitudinal response, the part of the response due to
the isovector part of the charge operator is shifted to
higher energy, as it costs energy to change the isospin of
the nucleus. In the path-integral picture, the hardening
appears as an increased propagation distance (or equiva-
lently, a reduced effective mass) associated with nuclear
charge exchange. In effect, the virtual photon sees an
‘‘enlarged’’ nucleon for processes in which the momen-


FIG. 70. Scaled Euclidean transverse response of 3He at 400
MeV/c compared to the Laplace transform of experimental
data from Marchand et al. (1985). The curves marked ‘‘im-
pulse’’ and ‘‘full’’ represent results with single-nucleon and the
complete current operators, respectively. In each case the cal-
culations includes a full treatment of final-state interactions.
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tum of the photon is comparable to that of typical pions
in the nucleus. At even larger t (lower energies), this
effect saturates because only a finite number of nucleons
are exchanging charge and the total charge must be con-
served. In this regime, the attractive nature of the aver-
age nuclear interaction increases the response.


Of course, this charge-exchange mechanism should
also exist in the single-nucleon transverse coupling, since
it is largely isovector. The scaled transverse data for
A53 are plotted in Fig. 70. In fact, this does occur, as
the response that would be obtained from single-
nucleon couplings alone is substantially quenched due to
charge exchange. However, when the full current is in-
cluded, the exchange currents add to the final response
and yield a result rather different from that obtained for
single-nucleon (impulse) currents. As is apparent in the
figures, the agreement with experiment is fairly satisfac-
tory. The energy dependence is reproduced quite well,
and the normalization is within 10%.


The situation is even more dramatic in the a particle,
as the difference between PWIA and ‘‘complete’’ calcu-
lations is much larger. This is not entirely surprising,
since the a particle has twice as many pairs as the tri-
nucleons, and the density is somewhat larger. Hence the
effect of charge exchange in the longitudinal response is
even larger. The scaled Euclidean response Ē is pre-
sented in Fig. 71. The figure shows both the truncated
response, which assumes that there is no response above
the experimental vmax , and the extrapolated response
obtained from sum-rule considerations.


The experimental values of the response are available
only up to a finite energy vmax . It is possible to estimate
the response at higher energies through sum-rule tech-
niques (Carlson and Schiavilla, 1994b). This extrapola-
tion introduces an uncertainty in the measured response
at small t , which is indicated by the difference between
the dashed line and the points labeled ‘‘Saclay’’ in the


FIG. 71. Scaled Euclidean longitudinal response as in Fig. 69,
but for 4He. Experimental data are from Bates (Dytman, 1988;
von Reden, 1990) and Saclay (Zghiche et al., 1993 and erratum
1995). The long-dashed line includes an estimate of the re-
sponse beyond the high-energy limit of the experiment. Plane-
wave impulse approximation and full calculations are from
Carlson and Schiavilla, 1994b.
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figure. The response above vmax is exponentially sup-
pressed at larger t , and by t'0.015 MeV this difference
is negligible.


Again, the charge-exchange mechanism produces a
quenching of the response in the longitudinal channel.
At large t (low v), though, the overall attractive nature
of the nuclear interaction increases the response. The
PWIA or spectral-function approximations do not really
contain information on the low-lying states of the
A-body system, so such calculations cannot be expected
to work well in this regime. As is apparent in the figure,
both the normalization and the energy dependence of
the PWIA calculation are quite poor.


In the transverse channel, two-body currents provide
a very important enhancement to the response. Again,
the calculated responses are in good agreement with ex-
perimental results (see Fig. 72). We should stress that
this agreement is not obtained if realistic ground-state
correlations, final-state interactions, and two-body cur-
rents are not all considered.


To further the understanding of the dynamic mecha-
nisms in the nuclear quasielastic response, one can also
consider the response of the nucleus to idealized single-
nucleon couplings. The nucleon, proton, isovector, spin-
longitudinal, and spin-transverse couplings are defined,
respectively, as


rN~q!5(
i


e iq•ri, (11.24)


rp~q!5(
i


e iq•ri
11tz ,i


2
, (11.25)


rt~q!5(
i


e iq•rit1 ,i , (11.26)


rstL~q!5(
i


e iq•ri~si•q̂!t1 ,i , (11.27)


FIG. 72. Transverse Euclidean responses as in Fig. 71, but for
4He. Experimental data are from Bates (Dytman, 1988) and
Saclay (Zghiche et al. 1993 and erratum 1995). Impulse (one-
body current) and full calculations are taken from Carlson and
Schiavilla, 1994b.
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rstT~q!5(
i


e iq•ri~si3q̂!t1 ,i . (11.28)


For each coupling ra one obtains an associated re-
sponse, which we normalize such that Ēa(q→` ,t50)
51. These responses are shown in the a particle in Fig.
73, except for Ēt , which is a simple weighted average of
the spin-longitudinal and spin-transverse isovector re-
sponses. In the large-t limit, the only contribution to
ĒN ,p is from elastic-scattering, and hence here ĒN


5Ēp/2, given the normalization above. There is no
elastic-scattering contribution to the isovector responses
in the a particle, and hence they are much smaller at
large t . The rapid increase of ĒN ,p at large t and de-
crease of (ĒstL ,ĒstT) at small t indicate that there is
substantial response at v,vqe and v.vqe , respec-
tively.


The charge-exchange effect described above occurs in
all isovector responses. Indeed, this effect has been ob-
served in comparisons of quasielastic spectra obtained in
(p ,p8) and (p ,n) reactions (Fig. 74; Chrien et al. 1980;
Taddeucci, 1991; Carlson and Schiavilla, 1994b). More
recent experiments have measured the spin-longitudinal
and spin-transverse responses in heavier nuclei (Tad-
deucci et al., 1994). These experiments find a transverse
response much larger than that obtained in traditional
RPA calculations.


In contrast to a simple interpretation of the experi-
mental results, microscopic calculations find an excess
strength in the spin-longitudinal response, both in sum-
rule calculations in 16O and in the Euclidean response in
the alpha particle (Pandharipande et al., 1994). How-
ever, this enhancement is significantly smaller than those
obtained in RPA calculations. A variety of physics is-
sues, including couplings to more than single nucleons
and multiple-scattering effects, need to be better under-
stood before this situation is satisfactorily resolved. Ex-
periments on several light nuclei could prove extremely
valuable in this regard, as they have in electron scatter-
ing.


FIG. 73. Scaled Euclidean response for a variety of idealized
single-nucleon couplings in the a-particle.
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Before leaving the subject of nuclear response, we
should also consider recent measurements of inclusive
scattering of polarized electrons from polarized 3He
(Woodward et al., 1990; Thompson et al., 1992; Gao
et al., 1994; Hansen et al., 1995; Milner et al., 1996). By
polarizing the electrons and the target nucleus, one can
obtain additional response functions (Donnelly and
Raskin, 1986). For a spin-1


2 nucleus, the additional re-
sponse functions are RLT8 and RT8 , and the related spin-
dependent asymmetry is


A52
cosu!vT8 RT8 12sinu!cosf!vTLRTL8


vLRL1vTRT
, (11.29)


where the vK are again kinematic factors and f! and u!


are the polar and azimuthal angles of the target spin
with respect to the three-momentum transfer q.


The initial motivation for these experiments was to try
to extract the neutron electric and magnetic form factors
by exploiting the fact that in 3He the neutron is largely
polarized parallel to the spin of the nucleus (the two
protons coupling to spin-0). This idea was first investi-
gated by Blankleider and Woloshyn (1984) in a closure
approximation, and then by Friar et al. (1990b). Later,
impulse-approximation calculations were performed by
Ciofi degli Atti, Pace, and Salmè (1992) and Schulze and
Sauer (1993). These calculations use realistic spin-
dependent spectral functions to calculate the asymme-
try, but do not include the effects of final-state interac-
tions or two-body currents. Gao et al. (1994) extracted a
value of the neutron magnetic form factor at Q250.19
GeV/c2 that is consistent with the dipole parametriza-
tion. Given the substantial effects of exchange currents


FIG. 74. Peak position measured for quasielastic scattering
with different experiments. The solid line is the free-particle
peak position.
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and final-state interactions, however, significant uncer-
tainty remains in the extraction. More complete calcula-
tions, as well as a wider range of measurements, are
likely to provide as much information about nuclear dy-
namics as about the nucleon form factors.


A variety of important physics issues remain in inclu-
sive electron-scattering experiments. They include mi-
croscopic calculations of the response in heavier nuclei,
more accurate descriptions of the pion and delta electro-
production region, effects of final-state interactions and
two-body currents on polarization observables, and re-
sponses to other probes, including the weak-interaction
couplings probed in parity-violating electron scattering.
Inclusive scattering remains an important tool for study-
ing nuclear dynamics and a rich field for both theory and
experiment.


XII. OUTLOOK


The last few years have seen the maturing of our tech-
niques for predicting and calculating the properties of
light nuclei using nonrelativistic quantum mechanics and
have witnessed extensive development of relativistic
methods for the treatment of few-body systems.


Nuclear many-body theory based on nonrelativistic
Hamiltonians with two- and three-nucleon interactions
and one- and two-body electroweak current operators
constructed consistently with these interactions, has
been shown, so far, to provide a satisfactory, quantita-
tive description of many of the nuclear properties that
can be reliably calculated. The success achieved within
this framework suggests that: (i) nucleons are the domi-
nant degrees of freedom in nuclei; (ii) meson and (par-
ticularly) pion degrees of freedom can be eliminated in
favor of effective two- and many-body operators involv-
ing only nucleonic coordinates; (iii) so far, no experi-
mental evidence exists for in-medium modifications of
the nucleon’s structure, such as its electromagnetic form
factors. Clearly, the validity of these conclusions is based
on the ability, developed in the past few years, to solve
nuclear bound- and scattering-state problems very accu-
rately. In this respect, it is worth emphasizing that this
progress could not have been realized without the par-
allel and tremendous progress in computational re-
sources.


Is there any clear breakdown of the above outlined
view of nuclear dynamics? Its present failure to repro-
duce correctly (Schiavilla and Riska, 1991; Plessas,
Christian, and Wagenbrunn, 1995; Van Orden, Devine,
and Gross, 1995) the observed deuteron structure func-
tions and tensor polarization at relatively low-
momentum-transfer values suggests that this may be the
case, although more accurate data, particularly on T20 ,
are needed in order to resolve the issue firmly. These
data will be forthcoming in the next few years from ex-
periments currently underway at NIKHEF and TJNAF.
A second failure consists in the inability of present two-
and three-nucleon interaction models to predict accu-
rately the nucleon and deuteron vector analyzing pow-
ers, measured in elastic NW d and dW N scattering at ener-
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gies below the three-body breakup threshold (Kievsky
et al., 1996). The Ay and iT11 observables appear to be
very sensitive, at the few percent level, to the values of
the 4P1/2 phase shift and e3/22 mixing angle, which in
turn are influenced by the 3PJ phase shifts in the NN
interaction. Three-nucleon interaction terms only mar-
ginally modify present theoretical predictions. It is in-
deed an open question whether present NN interaction
models, including only mild nonlocalities via
momentum-dependent components, can provide a si-
multaneous, satisfactory description of the polarization
observables mentioned above. Finally, another relevant
discrepancy is that between the spin-longitudinal and
spin-transverse response functions measured in quasi-
elastic (pW ,nW ) reactions and existing theoretical predic-
tions, particularly the substantial underestimate of
strength by the latter in the transverse channel (Tad-
deucci et al., 1994). Again, forthcoming data on few-
body nuclei from IUCF will be very helpful in clarifying
the situation. In this respect, Faddeev and, possibly,
hyperspherical-harmonics-based calculations of the
cross section and polarization-transfer coefficients mea-
sured in the d(pW ,nW )pp reaction should allow us to assess
the validity of the factorized impulse-approximation as-
sumption made in the analysis of the data and the im-
pact on the latter of effects presently ignored—
specifically, multistep contributions to the inclusive
spectrum, spin-dependent distortions, and medium
modification of the NN amplitudes.


With regard to future prospects, it now appears pos-
sible to carry out exact GFMC calculations of the low-
lying spectra of H, He, Li, Be, and B isotopes with mass
numbers <10 (Pieper and Wiringa, 1996) and of the as-
sociated elastic and inelastic electroweak transitions.
These studies should allow us to test and refine the
present models of three-nucleon interactions and elec-
troweak current operators. To date, results on the A
56 spectra indicate that the binding energies of low-
lying states of p-shell nuclei are underestimated by
theory (Pieper et al., 1996). Although three-nucleon in-
teractions are much weaker than two-nucleon ones, they
nevertheless contribute .15% of nuclear binding, due
to the large cancellation between kinetic and two-body
potential energies. Current models for them include a
long-range part arising from two-pion exchange via ex-
citation of intermediate D resonances; however, the
spin-isospin structure of their short-range components is
not known. It is an open question whether, in a nonrel-
ativistic framework, it is possible to reproduce correctly
the spectra of nuclei via a two-nucleon interaction, fitted
to NN data, and a three-nucleon interaction, con-
strained by fitting the bound-state energies of the few
nucleons.


The GFMC method will also allow the study of neu-
tron drops with .10 neutrons (Pudliner et al., 1996).
These studies will put useful constraints on the spin-
orbit and pairing interactions in nuclei, as well as on the
energy-density functionals commonly employed to
model neutron star crusts and nuclei far from stability.
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Of course, continuing progress in the hyperspherical
harmonics (Kievsky et al., 1996) and Faddeev-
Yakubovsky (Glöckle, 1996) approaches will lead to
very precise determinations of the binding energy of the
a particle (at the fraction-of-keV level) and low-energy
scattering parameters in the 311 and 212 elastic chan-
nels. These calculations will be useful, for example, in
setting bounds on the contribution of four-nucleon inter-
actions to nuclear binding.


Nuclear astrophysics is another area in which substan-
tial progress can be expected in the next few years. Low-
energy electroweak capture reactions involving light nu-
clei have great astrophysical importance in relation to
the mechanism for energy and neutrino production in
main-sequence stars—in particular, the determination
of the solar neutrino flux—and in relation to the
abundances of primordial elements in the universe. Ex-
amples of these are 2H(d ,g)4He, 3He(p ,e1ne)4He,
4He(3He,g)7Be, and 7Be(p ,g)8B. The rates for some
of these reactions cannot be measured in terrestrial
laboratories in the energy range typical of the stellar
interior, and it is therefore crucial to have accurate the-
oretical predictions for them, given their relevance for
studies of stellar structure and evolution. The hyper-
spherical harmonics and Faddeev-Yakubovsky methods
for A54, and quantum Monte Carlo techniques, in the
VMC and possibly GFMC versions, appear suitable for
attacking these problems. The calculations of experi-
mentally accessible reactions should provide stringent
tests for models of two- and many-body electroweak
current operators. In particular, they will allow the study
of a variety of related issues: the role of D degrees of
freedom in nuclei; the contribution of three-body cur-
rents associated with the three-nucleon interaction; the
effect of nonlocalities in the two-body currents due to
relativistic corrections; the influence of charge-
independence-breaking terms in the NN interaction;
and, in a more speculative vein, the problem of electron
screening in very-low-energy nuclear reactions, and its
impact on the extrapolation of the astrophysical factor
from the corresponding low-energy data.


The prospects for an ab initio microscopic description
of lepton and hadron scattering from light nuclei in the
quasielastic regime are also quite promising. The full re-
sponse of the trinucleons to polarized and unpolarized
probes will be mapped out in Faddeev (Glöckle, 1996)
and hyperspherical harmonics (Kievsky et al., 1996) cal-
culations. These techniques may not be easily extended
to heavier systems, however, because of the large num-
ber of channels that need to be included for converged
solutions of the scattering state at the relatively high
energies of interest in quasielastic processes.


On the other hand, the integral transform method,
both in its Laplace and its Lorenz kernel versions (Carl-
son and Schiavilla, 1994b; Martinelli et al., 1995), should
be very useful, at least in dealing with inclusive scatter-
ing from A>4. These techniques are in principle also
applicable to exclusive channels (Efros, 1993), but
whether they will provide accurate predictions for the
cross section of reactions like A(e ,e8p) or A(e ,e8d) is
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unclear at this point, simply because practical calcula-
tions have not yet been attempted.


This aspect of few-nucleon physics is of great impor-
tance, particularly in view of the experimental effort cur-
rently underway or already in progress at facilities such
as TJNAF, Mainz, and Bates. For example, a substantial
part of the experimental program is directed toward
parity-violating scattering of spin-polarized electrons.
The goal is to study the distribution and polarization of
virtual strange quarks in nuclei. The proper interpreta-
tion of these experiments requires a detailed under-
standing of many-body effects (Musolf, Donnelly, et al.,
1994; Musolf, Schiavilla, and Donnelly, 1994), including
those, for example, due to pair currents, strange-hadron
admixtures in the nuclear wave function, or dispersive
effects associated with Z0 –g exchanges.


Finally, the next few years should also see substantial
advances in the relativistic treatment of few-nucleon
dynamics—a topic we have not discussed in the present
review. Broadly speaking, it is possible to identify three
lines of attack: (1) quasipotential reductions of the
Bethe-Salpeter equation, such as the Blankenbecler-
Sugar (Blankenbecler and Sugar, 1966) or Gross (1969,
1974, 1982) equations; (2) the light-front Hamiltonian
dynamics (Keister and Polyzou, 1991); and (3) the
Bakamijan-Thomas-Foldy (Bakamjian and Thomas,
1953; Foldy, 1961; Krajcik and Foldy, 1974; Friar, 1975)
approach to the many-body theory of particles interact-
ing via potentials.


Covariant two-body quasipotential equations have
been solved with realistic one-boson-exchange interac-
tions and have been found to give a reasonable overall
description of low-energy NN data (Gross, Van Orden,
and Holinde, 1992) and deuteron elastic (Hummel and
Tjon, 1989; Van Orden, Devine, and Gross, 1995) and
inelastic (Hummel and Tjon, 1990) electromagnetic ob-
servables. Initial calculations of the 3H binding energy
have also been carried out with the Gross equation and
a realistic two-nucleon interaction, including some off-
shell couplings for the exchanged (scalar and pseudo-
scalar) bosons (Stadler and Gross, 1997). Within this
context, Stadler and Gross have shown that these off-
shell couplings play an important role in improving the
description of the two-body data and in predicting the
3H binding energy. They have also argued that these
couplings, in a nonrelativistic theory, lead to strong en-
ergy dependence of the two-body interaction as well as
to many-body effective interactions. However, a more
thorough examination of these issues is necessary to as-
sess their full impact. These studies will, no doubt, be
forthcoming in the next few years.


The other approach to the relativistic dynamics of
few-nucleon systems is that pioneered by Bakamijan and
Thomas (1953) and further developed by Foldy and oth-
ers (Foldy, 1961; Krajcik and Foldy, 1974; Friar, 1975).
This approach, discussed in Sec. II, appears to be par-
ticularly convenient from the computational standpoint
(Carlson, Pandharipande, and Schiavilla, 1993). Varia-
tional Monte Carlo methods have been developed to
treat the nonlocalities in the kinetic energy and v ij (For-
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est, Pandharipande, and Arriaga, 1997), and calculations
have been carried out for the A53 and 4 nuclei. When
compared to results obtained with a nonrelativistic
Hamiltonian containing a phase-equivalent two-body in-
teraction, the total relativistic effects produce a repul-
sive contribution of a few hundred keV in 3H and about
2 MeV in 4He, most of which is due to boost corrections
(Forest, Pandharipande, and Arriaga, 1997).


In Bethe-Salpeter-equation-based approaches, the
nucleons are described by Dirac spinors, interacting via
the exchange of observed or ‘‘effective’’ mesons. The
lower components of the spinors, associated with anti-
nucleon degrees of freedom, play an important role in
these theories. On the other hand, in the Bakamijan-
Thomas-Foldy method antinucleon degrees of freedom,
and indeed the composite nature of the nucleons, are
subsumed into effective phenomenological interactions
v ij (and Vijk), constrained by data. Thus the latter ap-
proach should be useful if the compositeness of the
nucleon is crucial in suppressing antinucleon degrees of
freedom.


Quantum Monte Carlo methods (both VMC and
GFMC) are currently being extended to calculate accu-
rately, using the relativistic Hamiltonian, properties that
depend upon the ground and scattering states of systems
with A<6. Electromagnetic properties are of particular
interest, since future experiments at TJNAF and other
facilities will involve large momentum transfers, in
which relativistic effects may be important. Clearly, this
will require the consistent treatment of the electromag-
netic current operator and the ‘‘boost’’ effects (such as
the Lorentz contraction and Wigner spin rotation) on
the wave function. The next few years should see sub-
stantial progress made along these lines.


Although quark models of mesons and baryons (not
discussed here) have been developed which give an ex-
cellent account of the observed spectrum, their implica-
tions have not been fully incorporated in current models
of the nuclear force. In this respect, the ability to calcu-
late six-fermion ground states with relativistic Hamilto-
nians may allow us to calculate the properties of the
deuteron and the NN scattering states directly from the
interactions of six constituent quarks. However, any
progress in this direction will depend on our ability to
define a realistic six-quark Hamiltonian.


In summary, substantial progress has been made in
our understanding of few-nucleon physics, progress
which is due to rapid development in both experimental
and theoretical techniques. The developments that we
have highlighted cover a broad range, from nuclear
structure studies, to low-energy reactions, to hadronic
and electroweak reaction studies at intermediate ener-
gies. We look forward to continued development and
growth in the field of few-nucleon physics.
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a critical reading of the manuscript. The support of the
U.S. Department of Energy is gratefully acknowledged.
Many of the calculations reported in the present article
were made possible by grants of computer time from the
National Energy Research Supercomputer Center, Cor-
nell Theory Center, and Mathematics and Computer
Science Division of Argonne National Laboratory.


REFERENCES


Aaron, R., and R. D. Amado, 1996, Phys. Rev. 150, 857.
Ahrens, J., 1985, Nucl. Phys. A 446, 229c.
Akaishi, Y., 1984, Nucl. Phys. A 416, 409c.
Albrecht, W., et al., 1968, Phys. Lett. 26B, 642.
Alfimenkov, V. P., S. B. Borzakov, G. G. Bunatyon, Ya. Vezh-


bitski, L. B. Pikelner, and E. I. Sharapov, 1980, Sov. J. Nucl.
Phys. 31, 21.


Allet, M., et al., 1994, Phys. Rev. C 50, 602.
Alt, E. O., P. Grassberger, and W. Sandhas, 1967, Nucl. Phys.


B 2, 167.
Alteholz, T., et al., 1994, Phys. Rev. Lett. 73, 1336.
Amaldi, E., S. Fubini, and G. Furlan, 1979, Electroproduction


at Low Energy and Hadron Form Factors, Springer Tracts in
Modern Physics No. 83, 1.


Amroun, A., et al., 1994, Nucl. Phys. A 579, 596.
Anderson, J. B., 1975, J. Chem. Phys. 63, 1499.
Arkatov, Y. M., P. I. Vatset, V. I. Voloshchuck, V. A. Zo-


lenko, and I. M. Prokhorets, 1980, Sov. J. Nucl. Phys. 31, 726.
Arnold, R. G., et al., 1975, Phys. Rev. Lett. 35, 776.
Arnold, R. G., et al., 1978, Phys. Rev. Lett. 40, 1429.
Arnold, R. G., et al., 1987, Phys. Rev. Lett. 58, 1723.
Arnold, R. G., et al., 1990, Phys. Rev. C 42, 1.
Arndt, R. A., L. D. Roper, R. L. Workman, and M. W. Mc-


Naughton, 1992, Phys. Rev. D 45, 3995.
Arndt, R. A., I. I. Strakovsky, and R. L. Workman, 1995, Phys.


Rev. C 52, 2246.
Arndt, R. A., R. L. Workman, and M. M. Pavan, 1994, Phys.


Rev. C 49, 2729.
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141B, 14.
Ciofi degli Atti, C., E. Pace, and G. Salmè, 1991, Phys. Rev. C
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Kirchbach, M., H.-U. Jäger, and M. Gmitro, 1984, Z. Phys. A


320, 689.
Kirchbach, M., S. Kamalov, and H.-U. Jäger, 1984, Phys. Lett.
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Syst. 5, 89.
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