MuCap Gondola Tests

- 1. Laser Photoelectron Calibration.
- 2. Determining Position Along Z.
- 3. Long Time After Pulsing

Overview

Laser to Calibrate N_{p.e.}

Assume stable and consistent light pulse from laser.

Measured area from scintillator gives a mean of $\Leftarrow fXN_{p.e.}$

Where f is some unknown efficiency constant

It then follows the uncertainty in the area is given by $\mathbb{R} = \frac{\Leftarrow}{\sqrt{(N_{p.e.})}}$

Thus:
$$N_{p.e.} = \left(\frac{\stackrel{}{\longleftarrow}^2}{\stackrel{}{\bigcirc}}\right)^2$$

This is a lower limit since σ is often due to more than just the uncertainty in N₁

Laser Process

1. Set laser to some arbitrary intensity.

2. Use KMAX to get mean and FWHM.

3. Apply
$$N_{p.e.} = \left(\frac{\stackrel{}{\leftarrow}}{\bigcirc}\right)^2$$

4. Repeat at new laser intensity.

5. Use slope of $N_{p.e.}$ vs. μ at MIP average to get $N_{p.e.}$ per MIP.

Example of Laser Data

OuterLeftADC Copy Copy

Laser Results

	_	Inner			Outer	
	Left		Right	Left	_	Right
N _{p.e} per Channel	0.48		0.36	0.49		0.63
N _{p.e} for MIP	74		61	80		102
Total N _{p.e} for MIP		135			182	

Determine Position Along Z

Two Methods

1. Δt between left and right TDC va

OuterTdcDiff Copy

2. Ratio of areas between left and right ADC <u>values</u>.

OuterAdcRatio Copy

Using Δt

Since L and v are constant, the uncertainty in Δt becomes:

$$\mathbb{B}_{(\cap t)} = \frac{2}{v} \mathbb{B}_X$$

Using Δt

The uncertainty in position of paddle is given by $\mathbb{B}_{paddle} = \frac{1}{\sqrt{(12)}} wZ 2.02 cm$ assuming a square paddle.

The the measured uncertainty is approximately give by $\mathbb{B}_X = \sqrt{(\mathbb{B}_{paddle}^2 A \mathbb{B}_{Tn}^2)}$

Therefore
$$\mathbb{B}_{True} = \sqrt{(\mathbb{B}_X^2 \mathbb{B} \mathbb{B}_{paddle}^2)} = \sqrt{(\frac{v^2}{4} \mathbb{B}_{(\cap t)}^2 \mathbb{B} \mathbb{B}_{paddle}^2)}$$

Determine v from Δt vs. Position

σ_{True} for each position

With 7 cm Paddle

Pos ition	Inner	Outer
- 30.5 cm	3.67 cm	3.17 cm
- 15.25 cm	3.67 cm	3.21 cm
0 cm	3.54 cm	2.98 cm
15.25 cm	4.36 cm	3.59 cm
30.5 cm	4.04 cm	3.48 cm
average	3.86 cm	3.29 cm

With 1cm Overlap @ center

langfristiges nachher pulsieren

